Practical Geriatrics ›› 2023, Vol. 37 ›› Issue (12): 1260-1265.doi: 10.3969/j.issn.1003-9198.2023.12.017
Previous Articles Next Articles
Received:
2023-02-02
Online:
2023-12-20
Published:
2023-12-12
CLC Number:
[1] SEPULVEDA-LOYOLA W, OSADNIK C, PHU S, et al. Diagnosis, prevalence, and clinical impact of sarcopenia in COPD: a systematic review and meta-analysis[J]. J Cachexia Sarcopenia Muscle, 2020, 11(5):1164-1176. [2] LEE D W, CHOI E Y. Sarcopenia as an independent risk factor for decreased BMD in COPD patients: Korean National Health and Nutrition Examination Surveys IV and V (2008-2011)[J]. PLoS One, 2016, 11(10):e164303. [3] BENZ E, TRAJANOSKA K, LAHOUSSE L, et al. Sarcopenia in COPD: a systematic review and meta-analysis[J]. Eur Respir Rev, 2019, 28(154):190049. [4] BYUN M K, CHO E N, CHANG J, et al. Sarcopenia correlates with systemic inflammation in COPD[J]. Int J Chron Obstruct Pulmon Dis, 2017, 12:669-675. [5] LIN B, BAI L, WANG S, et al. The association of systemic interleukin 6 and interleukin 10 levels with sarcopenia in elderly patients with chronic obstructive pulmonary disease[J]. Int J Gen Med, 2021, 14:5893-5902. [6] PASSEY S L, HANSEN M J, BOZINOVSKI S, et al. Emerging therapies for the treatment of skeletal muscle wasting in chronic obstructive pulmonary disease[J]. Pharmacol Ther, 2016, 166:56-70. [7] GAO J, DENG M, LI Y, et al. Resistin as a systemic inflammation-related biomarker for sarcopenia in patients with chronic obstructive pulmonary disease[J]. Front Nutr, 2022, 9:921399. [8] BARBIERI M, FERRUCCI L, RAGNO E, et al. Chronic inflammation and the effect of IGF-I on muscle strength and power in older persons[J]. Am J Physiol Endocrinol Metab, 2003, 284(3):E481-E487. [9] MA K, HUANG F X, QIAO R P, et al. Pathogenesis of sarcopenia in chronic obstructive pulmonary disease[J]. Front Physiol, 2022, 13:850964. [10] DALLE S, KOPPO K. Is inflammatory signaling involved in disease-related muscle wasting? Evidence from osteoarthritis, chronic obstructive pulmonary disease and type II diabetes[J]. Exp Gerontol, 2020, 137:110964. [11] CEELEN J, SCHOLS A, THIELEN N, et al. Pulmonary inflammation-induced loss and subsequent recovery of skeletal muscle mass require functional poly-ubiquitin conjugation[J]. Respir Res, 2018, 19(1):80. [12] LANGEN R C, HAEGENS A, VERNOOY J H, et al. NF-κB activation is required for the transition of pulmonary inflammation to muscle atrophy[J]. Am J Respir Cell Mol Biol, 2012, 47(3):288-297. [13] CASTETS P, RUEGG M A. MTORC1 determines autophagy through ULK1 regulation in skeletal muscle[J]. Autophagy, 2013, 9(9):1435-1437. [14] MILAN G, ROMANELLO V, PESCATORE F, et al. Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy[J]. Nat Commun, 2015, 6:6670. [15] SCICCHITANO B M, PELOSI L, SICA G, et al. The physiopathologic role of oxidative stress in skeletal muscle[J]. Mech Ageing Dev, 2018, 170:37-44. [16] MALTAIS F, DECRAMER M, CASABURI R, et al. An official American Thoracic Society/European Respiratory Society statement: update on limb muscle dysfunction in chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2014, 189(9):e15-e62. [17] BARNES P J. Oxidative stress in chronic obstructive pulmonary disease[J]. Antioxidants:Basel, 2022, 11(5):965. [18] LAGE V, DE PAULA F A, DOS S J, et al. Are oxidative stress biomarkers and respiratory muscles strength associated with COPD-related sarcopenia in older adults?[J]. Exp Gerontol, 2022, 157:111630. [19] SEPULVEDA-LOYOLA W, DE CASTRO L A, MATSUMOTO A K, et al. NOVEL antioxidant and oxidant biomarkers related to sarcopenia in COPD[J]. Heart Lung, 2021, 50(1):184-191. [20] MANO Y, TSUKAMOTO M, WANG K Y, et al. Oxidative stress causes muscle structural alterations via p38 MAPK signaling in COPD mouse model[J]. J Bone Miner Metab, 2022, 40(6):927-939. [21] YOSHIDA T, DELAFONTAINE P. Mechanisms of IGF-1-mediated regulation of skeletal muscle hypertrophy and atrophy[J]. Cells, 2020, 9(9):1970. [22] SEPU'LVEDA L W, SERGIO P, PROBST V S. Mecanismos fisiopatológicos de la sarcopenia en la EPOC[J]. Revista Chilena De Enfermedades Respiratorias, 2019, 35(2):124-132. [23] YANG S, WU H, ZHAO J, et al. Feasibility of 8-OHdG formation and hOGG1 induction in PBMCs for assessing oxidative DNA damage in the lung of COPD patients[J]. Respirology, 2014, 19(8):1183-1190. [24] DODD S L, GAGNON B J, SENF S M, et al. Ros-mediated activation of NF-kappaB and Foxo during muscle disuse[J]. Muscle Nerve, 2010, 41(1):110-113. [25] ITO A, HASHIMOTO M, TANIHATA J, et al. Involvement of Parkin-mediated mitophagy in the pathogenesis of chronic obstructive pulmonary disease-related sarcopenia[J]. J Cachexia Sarcopenia Muscle, 2022, 13(3):1864-1882. [26] THERIAULT M E, PARE M E, MALTAIS F, et al. Satellite cells senescence in limb muscle of severe patients with COPD[J]. PLoS One, 2012, 7(6):e39124. [27] JU C R, CHEN R C. Serum myostatin levels and skeletal muscle wasting in chronic obstructive pulmonary disease[J]. Respir Med, 2012, 106(1):102-108. [28] THERIAULT M E, PARE M E, LEMIRE B B, et al. Regenerative defect in vastus lateralis muscle of patients with chronic obstructive pulmonary disease[J]. Respir Res, 2014, 15(1):35. [29] SANCHO-MUNOZ A, GUITART M, RODRIGUEZ D A, et al. Deficient muscle regeneration potential in sarcopenic COPD patients: role of satellite cells[J]. J Cell Physiol, 2021, 236(4):3083-3098. [30] WUST R C, DEGENS H. Factors contributing to muscle wasting and dysfunction in COPD patients[J]. Int J Chron Obstruct Pulmon Dis, 2007, 2(3):289-300. [31] LANGEN R C, GOSKER H R, REMELS A H, et al. Triggers and mechanisms of skeletal muscle wasting in chronic obstructive pulmonary disease[J]. Int J Biochem Cell Biol, 2013, 45(10):2245-2256. [32] SCODITTI E, MASSARO M, GARBARINO S, et al. Role of diet in chronic obstructive pulmonary disease prevention and treatment[J]. Nutrients, 2019, 11(6):1357. [33] CEDERHOLM T, JENSEN G L, CORREIA M, et al. GLIM criteria for the diagnosis of malnutrition - A consensus report from the global clinical nutrition community[J]. Clin Nutr, 2019, 38(1):1-9. [34] 首健, 陈佩杰, 肖卫华. 糖皮质激素对骨骼肌代谢的调控及其机制[J]. 中国药理学通报, 2019, 35(5):602-606. [35] TAOUIS M, BENOMAR Y. Is resistin the master link between inflammation and inflammation-related chronic diseases?[J]. Mol Cell Endocrinol, 2021, 533:111341. [36] WEN F Y, ZHANG H W, BAO C, et al. Resistin increases ectopic deposition of lipids through miR-696 in C2C12 cells[J]. Biochem Genet, 2015, 53(4-6):63-71. [37] XUE M, ZHANG F, JI X, et al. Oleate ameliorates palmitate-induced impairment of differentiative capacity in c2c12 myoblast cells[J]. Stem Cells Dev, 2021, 30(5):289-300. [38] TAN D, ARMITAGE J, TEO T H, et al. Elevated levels of circulating exosome in COPD patients are associated with systemic inflammation[J]. Respir Med, 2017, 132:261-264. [39] 邓明明. 慢阻肺患者肌肉减少症的临床评价及血浆外泌体在其发生发展中的作用与机制研究[D]. 北京:北京协和医学院, 2022. [40] DE PAEPE B. The cytokine growth differentiation factor-15 and skeletal muscle health: portrait of an emerging widely applicable disease biomarker[J]. Int J Mol Sci, 2022, 23(21):13180. [41] DENG M, BIAN Y, ZHANG Q, et al. Growth differentiation factor-15 as a biomarker for sarcopenia in patients with chronic obstructive pulmonary disease[J]. Front Nutr, 2022, 9:897097. [42] PATEL M S, LEE J, BAZ M, et al. Growth differentiation factor-15 is associated with muscle mass in chronic obstructive pulmonary disease and promotes muscle wasting in vivo[J]. J Cachexia Sarcopenia Muscle, 2016, 7(4):436-448. [43] NAKATANI T, NAKASHIMA T, KITA T, et al. Responses of exposure to cigarette smoke at three dosage levels on soleus muscle fibers in Wistar-Kyoto and spontaneously hypertensive rats[J]. Jpn J Pharmacol, 2002, 90(2):157-163. [44] KAISARI S, ROM O, AIZENBUD D, et al. Involvement of NF-κB and muscle specific E3 ubiquitin ligase MuRF1 in cigarette smoke-induced catabolism in C2 myotubes[J]. Adv Exp Med Biol, 2013, 788:7-17. [45] CHAN S, CERNI C, PASSEY S, et al. Cigarette smoking exacerbates skeletal muscle injury without compromising its regenerative capacity[J]. Am J Respir Cell Mol Biol, 2020, 62(2):217-230. |
[1] | . [J]. Practical Geriatrics, 2024, 38(10): 973-973. |
[2] | . [J]. Practical Geriatrics, 2024, 38(10): 990-992. |
[3] | KOU Xi, LIU Yonghong, DONG Wei,WANG Hua, WANG Baomei, GAO Yufang. Correlation between insulin-like growth factor-1 and frailty syndrome in hospitalized elderly patients [J]. Practical Geriatrics, 2024, 38(5): 474-437. |
[4] | ZHUANG Xin, ZONG Zhiying, XU Hua, ZHENG Juan, WU Jinfang, LIU Kaihang, ZHAO Jing, ZHANG Lixia. Impact of feed-forward control training on the risk of falls in the elderly [J]. Practical Geriatrics, 2024, 38(5): 478-437. |
[5] | . [J]. Practical Geriatrics, 2024, 38(5): 525-437. |
[6] | . [J]. Practical Geriatrics, 2024, 38(3): 293-295. |
[7] | . [J]. Practical Geriatrics, 2024, 38(2): 114-118. |
[8] | . [J]. Practical Geriatrics, 2023, 37(12): 1255-1259. |
[9] | ZHAO Ya-xuan, ZHANG Li, WU Gen-li, ZHOU Jing-lei, SONG Nan-nan. Influence of intrinsic capacity decline on quality of life of the community elderly [J]. Practical Geriatrics, 2023, 37(10): 1014-1018. |
[10] | . [J]. Practical Geriatrics, 2023, 37(10): 1076-1080. |
[11] | . [J]. Practical Geriatrics, 2023, 37(9): 951-955. |
[12] | MIAO Yu-fei, QIAN Xiang-yun. Effects of cognitive emotion regulation strategies on frailty in elderly patients with comorbidities [J]. Practical Geriatrics, 2023, 37(8): 839-842. |
[13] | . [J]. Practical Geriatrics, 2023, 37(8): 863-864. |
[14] | YU Zhi-chao, CHEN Nan, XU Hong. Correlation of 25-hydroxyvitamin D and homocysteine with frailty in elderly hospitalized patients in Xinjiang [J]. Practical Geriatrics, 2023, 37(7): 667-670. |
[15] | LIAO Chen-fang, XU Zong-zheng, QI Hui-juan, LI Qing-zhu, WANG De-guo. A comparative study of skeletal muscle mass detected by DXA and chest CT in subjects undergoing physical examination [J]. Practical Geriatrics, 2023, 37(7): 685-689. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|