Practical Geriatrics ›› 2024, Vol. 38 ›› Issue (2): 114-118.doi: 10.3969/j.issn.1003-9198.2024.02.002
Previous Articles Next Articles
Received:
2023-11-10
Online:
2024-02-20
Published:
2024-02-26
CLC Number:
[1] YAMASOBA T, LIN F R, SOMEYA S, et al. Current concepts in age-related hearing loss: epidemiology and mechanistic pathways[J]. Hear Res, 2013, 303:30-38. [2] World Health Organization.Deafness and hearing loss[EB/OL].(2023-02-27)[2023-10-17] . https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss. [3] AMIEVA H, OUVRARD C. Does treating hearing loss in older adults improve cognitive outcomes? A review[J]. J Clin Med, 2020, 9(3): 805. [4] GOMAN A M, LIN F R. Prevalence of hearing loss by severity in the United States[J]. Am J Public Health, 2016, 106(10): 1820-1822. [5] GUAN J. Artificial intelligence in healthcare and medicine: promises, ethical challenges and governance[J]. Chin Med Sci J, 2019, 34(2): 76-83. [6] HAUG C J, DRAZEN J M. Artificial intelligence and machine learning in clinical medicine, 2023[J]. N Engl J Med, 2023, 388(13): 1201-1208. [7] WU S, ROBERTS K, DATTA S, et al. Deep learning in clinical natural language processing: a methodical review[J]. J Am Med Inform Assoc, 2020, 27(3): 457-470. [8] TOPOL E J. High-performance medicine: the convergence of human and artificial intelligence[J]. Nat Med, 2019, 25(1): 44-56. [9] 黄治物, 吴皓. 年龄相关性听力损失研究进展与临床干预策略[J]. 上海交通大学学报(医学版), 2022, 42(9): 1182-1187. [10] ABD GHANI M K, NOMA N G, MOHAMMED M A, et al. Innovative artificial intelligence approach for hearing-loss symptoms identification model using machine learning techniques[J]. Sustainability, 2021, 13(10): 5406. [11] HEISEY K L, WALKER A M, XIE K, et al. Dynamically masked audiograms with machine learning audiometry[J]. Ear Hear, 2020, 41(6): 1692-1702. [12] AL OSMAN R, AL OSMAN H. On the use of machine learning for classifying auditory brainstem responses: a scoping review[J]. IEEE Access, 2021, 9:110592-110600. [13] RAJA SANKARI V M, SNEKHALATHA U, MURUGAPPAN M, et al. Artificial intelligence-based hearing loss detection using acoustic threshold and speech perception level[J]. Arab J Sci Eng, 2023, 48:14883-14899. [14] ABD GHANI M K, NOMA N G, MOHAMMED M A, et al. Innovative artificial intelligence approach for hearing-loss symptoms identification model using machine learning techniques[J]. Sustainability, 2021, 13(10): 5406. [15] CHA D, PAE C, SEONG S B, et al. Automated diagnosis of ear disease using ensemble deep learning with a big otoendoscopy image database[J]. EBioMedicine, 2019, 45:606-614. [16] YANCEY K L, CHEROMEI L J, MUHANDO J, et al. Pediatric hearing screening in low-resource settings: incorporation of video-otoscopy and an electronic medical record[J].Int J Pediatr Otorhinolaryngol, 2019, 126:109633. [17] LI B. Hearing loss classification via AlexNet and extreme learning machine[J]. Int J Cogn Comput Eng, 2021, 2:144-153. [18] ORJI A, KAMENOV K, DIRAC M, et al. Global and regional needs, unmet needs and access to hearing aids[J]. Int J Audiol, 2020, 59(3): 166-172. [19] YOU E, LIN V, MIJOVIC T,et al.Artificial intelligence applications in otology: a state of the art review[J]. Otolaryngol Head Neck Surg, 2020, 163(6): 1123-1133. [20] BALLING L W, MØLGAARD L L, TOWNEND O, et al. The collaboration between hearing aid users and artificial intelligence to optimize sound[J]. Semin Hear, 2021, 42(3): 282-294. [21] LI Z, LIU F, YANG W, et al. A survey of convolutional neural networks: analysis, applications, and prospects[J]. IEEE TNeur Net Lear, 2022,32(12): 6999-7019. [22] BHAT G S, SHANKAR N, PANAHI I M S. Automated machine learning based speech classification for hearing aid applications and its real-time implementation on smartphone[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2020, 2020:956-959. [23] FAN X, SUN T, CHEN W, et al. Deep neural network based environment sound classification and its implementation on hearing aid APP[J]. Measurement, 2020, 159(9): 107790. [24] RAHME M, FOLKEARD P, SCOLLIE S. Evaluating the accuracy of step tracking and fall detection in the Starkey Livio artificial intelligence hearing aids: a pilot study[J]. Am J Audiol, 2021, 30(1): 182-189. [25] MANERO A, CRAWFORD K E, PROCK-GIBBS H, et al.Improving disease prevention, diagnosis, and treatment using novel bionic technologies[J]. Bioeng Transl Med, 2023, 8(1): e10359. [26] OLZE H, UECKER F C, HAUSSLER S M, et al. Hearing implants in the era of digitization[J]. Laryngorhinootologie, 2019, 98(S1): S82-S128. [27] LUO C, OMELCHENKO I, MANSON R, et al. Direct intracochlear acoustic stimulation using a PZT microactuator[J]. TrendsHear, 2015, 19: 2331216515616942. [28] ABOUSETTA A, EL KHOLY W, HEGAZY M, et al. A scoring system for cochlear implant candidate selection using artificial intelligence[J]. Hearing Balanc Commun, 2023, 21(2): 114-121. [29] AGHABIGLOU A, EKSIOGLU E M. Projection-Based cascaded U-Net model for MR image reconstruction[J]. Comput Methods Programs in Biomed, 2021, 207:106151. [30] LI C, LI X, ZHOU R. Cochlear CT image segmentation based on U-Net neural network[J]. J Radiat Res Appl Sci, 2023, 16(2): 100560. [31] LEVIN S V, KUZOVKOV V, LEVINA E A, et al. Rehabilitation of patients with a cochlear implant using artificial intelligence algorithms[J]. J Hearing Sci, 2022, 12(1): 183-184. [32] WALTZMAN S B, KELSALL D C. The use of artificial intelligence to program cochlear implants[J]. Otol Neurotol, 2020, 41(4): 452-457. [33] CONVERY E, KEIDSER G, MCLELLAND M, et al. A smartphone APP to facilitate remote patient-provider communication in hearing health care: usability and effect on hearing aid outcomes[J]. Telemed J E Health, 2020, 26(6): 798-804. [34] MEEUWS M, PASCOAL D, JANSSENS DE VAREBEKE S, et al. Cochlear implant telemedicine: remote fitting based on psychoacoustic self-tests and artificial intelligence[J]. Cochlear Implants Int, 2020, 21(5): 260-268. [35] KOTELUK O, WARTECKI A, MAZUREK S, et al. How do machines learn? Artificial intelligence as a new era in medicine[J]. J Pers Med, 2021, 11(1): 32. [36] ROWE M. An introduction to machine learning for clinicians[J]. Acad Med, 2019, 94(10): 1433-1436. [37] MURDOCH B. Privacy and artificial intelligence: challenges for protecting health information in a new era[J]. BMC Med Ethics, 2021, 22(1): 122. |
[1] | . [J]. Practical Geriatrics, 2024, 38(10): 973-973. |
[2] | . [J]. Practical Geriatrics, 2024, 38(10): 990-992. |
[3] | KOU Xi, LIU Yonghong, DONG Wei,WANG Hua, WANG Baomei, GAO Yufang. Correlation between insulin-like growth factor-1 and frailty syndrome in hospitalized elderly patients [J]. Practical Geriatrics, 2024, 38(5): 474-437. |
[4] | ZHUANG Xin, ZONG Zhiying, XU Hua, ZHENG Juan, WU Jinfang, LIU Kaihang, ZHAO Jing, ZHANG Lixia. Impact of feed-forward control training on the risk of falls in the elderly [J]. Practical Geriatrics, 2024, 38(5): 478-437. |
[5] | . [J]. Practical Geriatrics, 2024, 38(5): 525-437. |
[6] | . [J]. Practical Geriatrics, 2024, 38(3): 293-295. |
[7] | . [J]. Practical Geriatrics, 2024, 38(1): 1-2. |
[8] | . [J]. Practical Geriatrics, 2024, 38(1): 3-6. |
[9] | . [J]. Practical Geriatrics, 2024, 38(1): 15-17. |
[10] | . [J]. Practical Geriatrics, 2024, 38(1): 68-71. |
[11] | . [J]. Practical Geriatrics, 2024, 38(1): 72-76. |
[12] | ZHU Jiao, XIA Lili, XU Minzheng, LIU Ying, WANG Yingxin, YOU Zhengyuan. Analysis of characteristics and influencing factors of fall injury in hospitalized elderly patients [J]. Practical Geriatrics, 2024, 38(1): 81-85. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|