[1] LI Y, TENG D, SHI X, et al.Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American diabetes association: national cross sectional study[J]. BMJ, 2020, 369: m997. [2] ZHANG S, QI Z, WANG Y, et al. Effect of sodium-glucose transporter 2 inhibitors on sarcopenia in patients with type 2 diabetes mellitus: a systematic review and meta-analysis[J]. Front Endocrinol, 2023, 14: 1203666. [3] ARGYROPOULOU D, GELADAS N D, NOMIKOS T, et al. Exercise and nutrition strategies for combating sarcopenia and type 2 diabetes mellitus in older adults[J]. J Funct Morphol Kinesiol, 2022, 7(2): 48. [4] STRASSER B, WOLTERS M, WEYH C, et al. The effects of lifestyle and diet on gut microbiota composition, inflammation and muscle performance in our aging society[J]. Nutrients, 2021, 13(6): 2045. [5] PURNAMASARI D, TETRASIWI E N, KARTIKO G J, et al.Sarcopenia and chronic complications of type 2 diabetes mellitus[J]. Rev Diabet Stud, 2022, 18(3): 157-165. [6] TRIERWEILER H, KISIELEWICZ G, HOFFMANN JONASSON T, et al. Sarcopenia: a chronic complication of type 2 diabetes mellitus[J]. Diabetol Metab Syndr, 2018, 10: 25. [7] FENG L, GAO Q, HU K, et al. Prevalence and risk factors of sarcopenia in patients with diabetes: a meta-analysis[J]. J Clin Endocrinol Metab, 2022, 107(5): 1470-1483. [8] WENDOWSKI O, REDSHAW Z, MUTUNGI G. Dihydrotestosterone treatment rescues the decline in protein synthesis as a result of sarcopenia in isolated mouse skeletal muscle fibres[J]. J Cachexia Sarcopenia Muscle, 2017, 8(1): 48-56. [9] OBERBACH A, BOSSENZ Y, LEHMANN S, et al. Altered fiber distribution and fiber-specific glycolytic and oxidative enzyme activity in skeletal muscle of patients with type 2 diabetes[J]. Diabetes Care, 2006, 29(4): 895-900. [10] ALBERS P H, PEDERSEN A J T, BIRK J B, et al. Human muscle fiber type-specific insulin signaling: impact of obesity and type 2 diabetes[J]. Diabetes, 2015, 64(2): 485-497. [11] CAO Y, LI Y, HAN W, et al.Sodium butyrate ameliorates type 2 diabetes-related sarcopenia through IL-33-independent ILC2s/IL-13/STAT3 signaling pathway[J]. J Inflamm Res, 2023, 16: 343-358. [12] LIU Z, GUO Y, ZHENG C. Type 2 diabetes mellitus related sarcopenia: a type of muscle loss distinct from sarcopenia and disuse muscle atrophy[J]. Front Endocrinol, 2024, 15: 1375610. [13] MARTIN-GALLAUSIAUX C, MARINELLI L, BLOTTIÈRE H M, et al. SCFA: mechanisms and functional importance in the gut[J]. Proc Nutr Soc, 2021, 80(1): 37-49. [14] KOH A, DE VADDER F, KOVATCHEVA-DATCHARY P, et al. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites[J]. Cell, 2016, 165(6): 1332-1345. [15] CRUDELE L, GADALETA R M, CARIELLO M, et al. Gut microbiota in the pathogenesis and therapeutic approaches of diabetes[J]. EBioMedicine, 2023, 97: 104821. [16] TICINESI A, MANCABELLI L, TAGLIAFERRI S, et al. The gut-muscle axis in older subjects with low muscle mass and performance: a proof of concept study exploring fecal microbiota composition and function with shotgun metagenomics sequencing[J]. Int J Mol Sci, 2020, 21(23): 8946. [17] LAU W L, VAZIRI N D. Gut microbial short-chain fatty acids and the risk of diabetes[J]. Nat Rev Nephrol, 2019, 15(7): 389-390. [18] OTSUKA R, ZHANG S, FURUYA K, et al. Association between short-chain fatty acid intake and development of muscle strength loss among community-dwelling older Japanese adults[J]. Exp Gerontol, 2023, 173: 112080. [19] LV W Q, LIN X, SHEN H, et al. Human gut microbiome impacts skeletal muscle mass via gut microbial synthesis of the short-chain fatty acid butyrate among healthy menopausal women[J]. Cachexia Sarcopenia Muscle, 2021, 12(6): 1860-1870. [20] VAN DER HEE B, WELLS J M. Microbial regulation of host physiology by short-chain fatty acids[J]. Trends Microbiol, 2021, 29(8): 700-712. [21] CHAMBERS E S, PRESTON T, FROST G, et al. Role of gut microbiota-generated short-chain fatty acids in metabolic and cardiovascular health[J]. Curr Nutr Rep, 2018, 7(4): 198-206. [22] MARUTA H, YAMASHITA H. Acetic acid stimulates G-protein-coupled receptor GPR43 and induces intracellular calcium influx in L6 myotube cells[J]. PLoS One, 2020, 15(9): e0239428. [23] HU J, LIN S, ZHENG B, et al. Short-chain fatty acids in control of energy metabolism[J]. Crit Rev Food Sci Nutr, 2018, 58(8): 1243-1249. [24] HASHIMOTO Y, TAKAHASHI F, OKAMURA T, et al. Diet, exercise, and pharmacotherapy for sarcopenia in people with diabetes[J]. Metabolism, 2023, 144: 155585. [25] FRAMPTON J, MURPHY K G, FROST G, et al. Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function[J]. Nat Metab, 2020, 2(9): 840-848. [26] JIANG Y, LI K, LI X, et al.Sodium butyrate ameliorates the impairment of synaptic plasticity by inhibiting the neuroinflammation in 5XFAD mice[J]. Chem Biol Interact, 2021, 341: 109452. [27] GAO Z, YIN J, ZHANG J, et al.Butyrate improves insulin sensitivity and increases energy expenditure in mice[J]. Diabetes, 2009, 58(7): 1509-1517. [28] WALSH M E, VAN REMMEN H. Emerging roles for histone deacetylases in age-related muscle atrophy[J]. Nutr Healthy Aging, 2016, 4(1): 17-30. [29] ZHANG X, LI H, HE M, et al. Immune system and sarcopenia: presented relationship and future perspective[J]. Exp Gerontol, 2022, 164: 111823. [30] CHEN H, HUANG X, DONG M, et al. The association between sarcopenia and diabetes: from pathophysiology mechanism to therapeutic strategy[J]. Diabetes Metab Syndr Obes, 2023, 16: 1541-1554. [31] ZHONG H, YU H, CHEN J, et al.The short-chain fatty acid butyrate accelerates vascular calcification via regulation of histone deacetylases and NF-κB signaling[J]. Vascul Pharmacol, 2022, 146: 107096. [32] FAN Z, WU J, CHEN Q N, et al. Type 2 diabetes-induced overactivation of P300 contributes to skeletal muscle atrophy by inhibiting autophagic flux[J]. Life Sci, 2020, 258: 118243. [33] KALKAN H, PAGANO E, PARIS D, et al. Targeting gut dysbiosis against inflammation and impaired autophagy in Duchenne muscular dystrophy[J]. EMBO Mol Med, 2023, 15(3): e16225. [34] CHRIETT S. CA-006: Le butyrate et le βHydroxybutyrate diminuent l’insulino-résistance des myotubes induite par les acides gras à longue chaine par des mécanismes différents[J]. Diabetes Metab, 2016, 42(suppl 1): A36. [35] BESIO R, IULA G, GARIBALDI N, et al. 4-PBA ameliorates cellular homeostasis in fibroblasts from osteogenesis imperfecta patients by enhancing autophagy and stimulating protein secretion[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(5 Pt A): 1642-1652. [36] TICINESI A, NOUVENNE A, CERUNDOLO N, et al. Gut microbiota, muscle mass and function in aging: a focus on physical frailty and sarcopenia[J]. Nutrients, 2019, 11(7): 1633. [37] KAHN S E, HULL R L, UTZSCHNEIDER K M. Mechanisms linking obesity to insulin resistance and type 2 diabetes[J]. Nature, 2006, 444(7121): 840-846. [38] BITTEL D C, BITTEL A J, TUTTLE L J, et al. Adipose tissue content, muscle performance and physical function in obese adults with type 2 diabetes mellitus and peripheral neuropathy[J]. J Diabetes Complications, 2015, 29(2): 250-257. [39] MEEX R C R, BLAAK E E, VAN LOON L J C. Lipotoxicity plays a key role in the development of both insulin resistance and muscle atrophy in patients with type 2 diabetes[J]. Obes Rev, 2019, 20(9): 1205-1217. [40] LIU C, CHEUNG W H, LI J, et al.Understanding the gut microbiota and sarcopenia: a systematic review[J]. J Cachexia Sarcopenia Muscle, 2021, 12(6): 1393-1407. [41] SALES K M, REIMER R A.Unlocking a novel determinant of athletic performance: the role of the gut microbiota, short-chain fatty acids, and “biotics” in exercise[J]. J Sport Health Sci, 2023, 12(1): 36-44. [42] 何方,李金星,吴思谋. 肠源性短链脂肪酸生成机制及其饮食调控[J]. 食品科学技术学报,2023,41(1):10-21. [43] LAHIRI S, KIM H, GARCIA-PEREZ I, et al. The gut microbiota influences skeletal muscle mass and function in mice[J]. Sci Transl Med, 2019, 11(502): eaan5662. |