实用老年医学 ›› 2024, Vol. 38 ›› Issue (4): 353-357.doi: 10.3969/j.issn.1003-9198.2024.04.007

• 临床研究 • 上一篇    下一篇

农村老年人运动认知功能减退综合征风险预测模型的构建及验证

高娜, 许梦茹, 张利, 刘玉文, 魏星   

  1. 233000安徽省蚌埠市,蚌埠医科大学护理学院(高娜,许梦茹,张利);
    卫生管理学院(刘玉文);
    公共基础学院(魏星)
  • 收稿日期:2023-06-29 发布日期:2024-04-23
  • 通讯作者: 魏星,Email: weixing@bbmc.edu.cn
  • 基金资助:
    安徽省人文社会科学研究重点项目(SK2021A0443);安徽省教育厅人才项目(gxgwfx2019031)

Construction and validation of a risk prediction model for motoric cognitive risk syndrome in the elderly in rural areas

GAO Na, XU Mengru, ZHANG Li, LIU Yuwen, WEI Xing   

  1. School of Nursing(GAO Na, XU Mengru, ZHANG Li), School of Health Management(LIU Yuwen), School of Public Foundation(WEI Xing), Bengbu Medical University, Bengbu 233000,China
  • Received:2023-06-29 Published:2024-04-23
  • Contact: WEI Xing,Email:weixing@bbmc.edu.cn

摘要: 目的 探讨农村老年人运动认知功能减退综合征(MCRS)的影响因素,并构建列线图预测模型。 方法 于2022年10月至2023年5月,采用一般资料问卷、匹兹堡睡眠质量指数量表、社会支持量表、简版老年抑郁量表、简易精神状态检查量表、4 m步行测试法对752例农村老年人进行调查评估。根据是否发生MCRS将其分为MCRS组和非MCRS组,通过Lasso回归筛选相关变量,采用多因素Logistic回归构建农村老年人MCRS列线图预测模型,绘制ROC曲线和校准曲线评价模型的区分度和校准度,运用Bootstrap法对模型进行内部验证。 结果 752例农村老年人MCRS的发生率为14.89%(112/752)。年龄、久坐行为、多重用药、睡眠质量较差、社会支持、抑郁是农村老年人发生MCRS的影响因素(P<0.05)。列线图预测模型ROC曲线下面积为0.844(95%CI:0.804~0.883),Bootstrap内部验证结果显示:平均绝对误差为0.009,模型表现与理想模型具有较好的一致性。 结论 本研究构建的农村老年人MCRS列线图模型预测效果较好,可为早期识别MCRS高风险人群提供参考。

关键词: 农村, 老年人, 运动认知功能减退综合征, 影响因素, 列线图

Abstract: Objective To construct and validate a risk prediction model for motoric cognitive risk syndrome (MCRS) in the elderly in rural areas. Methods From October 2022 to May 2023, 752 rural elderly people were surveyed using General Information Questionnaire, Pittsburgh Sleep Quality Index Scale, Social Support Rating Scale, Simplified Geriatric Depression Scale-15(GDS-15), Mini-Mental State Examination(MMSE) and 4-meter walk test. According to the occurrence of MCRS, they were divided into MCRS group and non-MCRS group. The relevant variables of MCRS were screened by Lasso regression, and then the nomogram prediction model of MCRS in the elderly in rural areas was constructed by multi-factor Logistic regression. The ROC curve and calibration curve were drawn to evaluate the model's discrimination and calibration,and a bootstrap was further conducted to internally validate the model. Results The incidence rate of MCRS in 752 rural elderly people was 14.89% (112/752). Age, sedentary behavior, polypharmacy, poor sleep quality, social support and depression were the influencing factors of MCRS in the elderly in rural areas (P<0.05). The area under the ROC curve of the nomogram prediction model was 0.844 (95%CI: 0.804-0.883). Bootstrap internal verification results showed that the average absolute error was 0.009, and the model performance was in good agreement with the ideal model. Conclusions The nomogram model of MCRS constructed in this study has a good predictive effect, which provides a reference for early identification of high-risk groups of MCRS.

Key words: rural, aged, motoric cognitive risk syndrome, influencing factor, nomogram

中图分类号: