实用老年医学 ›› 2023, Vol. 37 ›› Issue (12): 1249-1254.doi: 10.3969/j.issn.1003-9198.2023.12.015
董丽华, 李加梅, 郑加平, 雷小晶
收稿日期:
2023-02-18
出版日期:
2023-12-20
发布日期:
2023-12-12
通讯作者:
雷小晶,Email:1063005044@qq.com
基金资助:
Received:
2023-02-18
Online:
2023-12-20
Published:
2023-12-12
中图分类号:
董丽华, 李加梅, 郑加平, 雷小晶. 血液生物标志物在阿尔茨海默病早期诊断中的研究进展[J]. 实用老年医学, 2023, 37(12): 1249-1254.
[1] REN R J, QI J L, LIN S H, et al. The China Alzheimer Report 2022[J]. Gen Psychiatr, 2022, 35(1):e100751. [2] SCHELTENS P, DE STROOPER B, KIVIPELTO M, et al. Alzheimer's disease[J]. Lancet, 2021, 397(10284):1577-1590. [3] JACK C R Jr, BENNETT D A, BLENNOW K, et al. NIA-AA research framework: toward a biological definition of Alzheimer's disease[J]. Alzheimers Dement, 2018, 14(4):535-562. [4] SEUBERT P, VIGO-PELFREY C, ESCH F, et al. Isolation and quantification of soluble Alzheimer's beta-peptide from biological fluids[J]. Nature, 1992, 359(6393):325-327. [5] VANDERMEEREN M, MERCKEN M, VANMECHELEN E, et al. Detection of tau proteins in normal and Alzheimer's disease cerebrospinal fluid with a sensitive sandwich enzyme-linked immunosorbent assay[J]. J Neurochem, 1993, 61(5):1828-1834. [6] DUBOIS B, FELDMAN H H, JACOVA C, et al. Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria[J]. Lancet Neurol, 2007, 6(8):734-746. [7] JACK C R Jr, ALBERT M S, KNOPMAN D S, et al. Introduction to the recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease[J]. Alzheimers Dement, 2011, 7(3):257-262. [8] DUBOIS B, FELDMAN H H, JACOVA C, et al. Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria[J]. Lancet Neurol, 2014, 13(6):614-629. [9] HAMPEL H, CUMMINGS J, BLENNOW K, et al. Developing the ATX(N) classification for use across the Alzheimer disease continuum[J]. Nat Rev Neurol, 2021, 17(9):580-589. [10] 中华医学会神经病学分会痴呆与认知障碍学组. 阿尔茨海默病源性轻度认知障碍诊疗中国专家共识2021[J]. 中华神经科杂志,2022,55(5):421-440. [11] HUANG S, WANG Y J, GUO J, et al. Biofluid biomarkers of Alzheimer's disease: progress, problems, and perspectives[J]. Neurosci Bull, 2022, 38(6):677-691. [12] HANSSON O, LEHMANN S, OTTO M, et al. Advantages and disadvantages of the use of the CSFAmyloid β (Aβ) 42/40 ratio in the diagnosis of Alzheimer's Disease[J]. Alzheimers Res Ther, 2019, 11(1):34. [13] DELABY C, HIRTZ C, LEHMANN S. Overview of the blood biomarkers in Alzheimer's disease: promises and challenges[J]. Rev Neurol: Paris, 2023, 179(3):161-172. [14] LI Y, SCHINDLER S E, BOLLINGER J G, et al. Validation of plasma amyloid-beta 42/40 for detecting Alzheimer disease amyloid plaques[J]. Neurology, 2022, 98(7):e688-e699. [15] JANELIDZE S, TEUNISSEN C E, ZETTERBERG H, et al. Head-to-head comparison of 8 plasma amyloid-β 42/40 assays in Alzheimer disease[J].JAMA Neurol, 2021, 78(11):1375-1382. [16] FOSSATI S, RAMOS CEJUDO J, DEBURE L, et al. Plasma tau complements CSF tau and P-tau in the diagnosis of Alzheimer's disease[J]. Alzheimers Dement: Amst, 2019, 11:483-492. [17] JANELIDZE S, MATTSSON N, PALMQVIST S, et al. Plasma P-tau181 in Alzheimer's disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer's dementia[J]. Nat Med, 2020, 26(3):379-386. [18] TISSOT C, BENEDET A L, THERRIAULT J, et al. Plasma pTau181 predicts cortical brain atrophy in aging and Alzheimer's disease[J].Alzheimers Res Ther, 2021, 13(1):69. [19] MOSCOSO A, GROTHE M J, ASHTON N J, et al. Time course of phosphorylated-tau181 in blood across the Alzheimer's disease spectrum[J]. Brain, 2021, 144(1):325-339. [20] LUSSIER F Z, BENEDET A L, THERRIAULT J, et al. Plasma levels of phosphorylated tau 181 are associated with cerebral metabolic dysfunction in cognitively impaired and amyloid-positive individuals[J]. Brain Commun, 2021, 3(2):fcab073. [21] PALMQVIST S, JANELIDZE S, QUIROZ Y T, et al. Discriminative accuracy of plasma phospho-tau217 for Alzheimer disease vs other neurodegenerative disorders[J]. JAMA, 2020, 324(8):772-781. [22] CHEN L A, NIU X Q, WANG Y Y, et al. Plasma tau proteins for the diagnosis of mild cognitive impairment and Alzheimer's disease: a systematic review and meta-analysis[J]. Front Aging Neurosci, 2022, 14:942629. [23] ASHTON N J, JANELIDZE S, MATTSSON-CARLGREN N, et al. Differential roles of Aβ42/40, p-tau231 and p-tau217 for Alzheimer's trial selection and disease monitoring[J]. Nat Med, 2022, 28(12):2555-2562. [24] ASHTON N J, PASCOAL T A, KARIKARI T K, et al. Plasma p-tau231: a new biomarker for incipient Alzheimer's disease pathology[J]. Acta Neuropathol, 2021, 141(5):709-724. [25] MILÀ-ALOMÀ M, ASHTON N J, SHEKARI M, et al. Plasma p-tau231 and p-tau217 as state markers of amyloid-β pathology in preclinical Alzheimer's disease[J]. Nat Med, 2022, 28(9):1797-1801. [26] GONZALEZ-ORTIZ F, TURTON M, KAC P R, et al. Brain-derived tau: a novel blood-based biomarker for Alzheimer's disease-type neurodegeneration[J]. Brain, 2023, 146(3):1152-1165. [27] KHALIL M, TEUNISSEN C E, OTTO M, et al. Neurofilaments as biomarkers in neurological disorders[J]. Nat Rev Neurol, 2018, 14(10):577-589. [28] MATTSSON N, ANDREASSON U, ZETTERBERG H, et al. Association of plasma neurofilament light with neurodegeneration in patients with Alzheimer disease[J]. JAMA Neurol, 2017, 74(5):557-566. [29] PREISCHE O, SCHULTZ S A, APEL A, et al. Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer's disease[J]. Nat Med, 2019, 25(2):277-283. [30] GIACOMUCCI G, MAZZEO S, BAGNOLI S, et al. Plasma neurofilament light chain as a biomarker of Alzheimer's disease in subjective cognitive decline and mild cognitive impairment[J]. J Neurol, 2022, 269(8):4270-4280. [31] BENEDET A L, MILÀ-ALOMÀ M, VRILLON A, et al. Differences between plasma and cerebrospinal fluid glial fibrillary acidic protein levels across the Alzheimer disease continuum[J]. JAMA Neurol, 2021, 78(12):1471-1483. [32] PEREIRA J B, JANELIDZE S, SMITH R, et al. Plasma GFAP is an early marker of amyloid-beta but not tau pathology in Alzheimer's disease[J]. Brain, 2021, 144(11):3505-3516. [33] CHATTERJEE P, VERMUNT L, GORDON B A, et al. Plasma glial fibrillary acidic protein in autosomal dominant Alzheimer's disease: associations with Abeta-PET, neurodegeneration, and cognition[J]. Alzheimers Dement, 2023, 19(7):2790-2804. [34] CICOGNOLA C, JANELIDZE S, HERTZE J, et al. Plasma glial fibrillary acidic protein detects Alzheimer pathology and predicts future conversion to Alzheimer dementia in patients with mild cognitive impairment[J]. Alzheimers Res Ther, 2021, 13(1):68. [35] OECKL P, ANDERL-STRAUB S, VON ARNIM C A F, et al. Serum GFAP differentiates Alzheimer's disease from frontotemporal dementia and predicts MCI-to-dementia conversion[J]. J Neurol Neurosurg Psychiatry, 2022. DOI: 10.1136/jnnp-2021-328547. [36] TIBLE M, SANDELIUS Å, HÖGLUND K, et al. Dissection of synaptic pathways through the CSF biomarkers for predicting Alzheimer disease[J]. Neurology, 2020, 95(8):e953-e961. [37] SANDELIUS A, PORTELIUS E, KALLEN A, et al. Elevated CSF GAP-43 is Alzheimer's disease specific and associated with tau and amyloid pathology[J]. Alzheimers Dement, 2019, 15(1):55-64. [38] CHEN Y, HU S, WU X, et al. Synaptotagmin-1 is a bidirectional Ca(2+) sensor for neuronal endocytosis[J]. Proc Natl Acad Sci U S A, 2022, 119(20):e2111051119. [39] CASALETTO K B, ELAHI F M, BETTCHER B M, et al. Neurogranin, a synaptic protein, is associated with memory independent of Alzheimer biomarkers[J]. Neurology, 2017, 89(17):1782-1788. [40] SONG Z, XU Y, DENG W, et al. Brain derived exosomes are a double-edged sword in Alzheimer's disease[J]. Front Mol Neurosci, 2020, 13:79. [41] JIA L, ZHU M, KONG C, et al. Blood neuro-exosomal synaptic proteins predict Alzheimer's disease at the asymptomatic stage[J]. Alzheimers Dement, 2021, 17(1):49-60. [42] ANGELOPOULOU E, PAUDEL Y N, SHAIKH M F, et al. Flotillin: a promising biomarker for Alzheimer's disease[J]. J Pers Med, 2020, 10(2):20. [43] ABDULLAH M, KIMURA N, AKATSU H, et al. Flotillin is a novel diagnostic blood marker of Alzheimer's Disease[J]. J Alzheimers Dis, 2019, 72(4):1165-1176. |
[1] | 孙丽, 尹卫红, 经俊, 钱夏丽. 亚麻醉剂量艾司氯胺酮对老年脊柱手术病人术后早期认知功能障碍的影响[J]. 实用老年医学, 2024, 38(10): 1039-1043. |
[2] | 张伟, 王蓉. 衰老作为神经退行性疾病危险因素的科学现状分析[J]. 实用老年医学, 2023, 37(10): 984-988. |
[3] | 时建铨, 郑慧芬, 徐畅, 王变荣. 认知障碍简明评价量表与Addenbrooke认知评估量表Ⅲ诊断阿尔茨海默病的准确性比较[J]. 实用老年医学, 2023, 37(10): 1041-1043. |
[4] | 阎子花, 杜静, 宋竹梅, 张兴梅, 张楠. 痴呆病人病感失认测评工具的研究进展[J]. 实用老年医学, 2023, 37(10): 1059-1063. |
[5] | 王琳琳, 杨诗怡, 徐俊. 人工智能在阿尔茨海默病中的研究进展[J]. 实用老年医学, 2023, 37(9): 869-872. |
[6] | 王敏, 郭文军, 汤忠泉, 赵晓敏, 欧婷, 李云涛. 听力障碍与阿尔茨海默病相关性的Meta分析[J]. 实用老年医学, 2023, 37(9): 915-919. |
[7] | 段景宜, 刘静, 查玉航, 杨巧露, 何海洋, 马亚男, 高海英. 阿尔茨海默病医防融合模式的探索[J]. 实用老年医学, 2023, 37(8): 757-760. |
[8] | 张绍敏, 吴锦晖. COVID-19与阿尔茨海默病的最新研究进展[J]. 实用老年医学, 2023, 37(5): 521-523. |
[9] | 赵璨, 冯美江. 外泌体与阿尔茨海默病的研究进展[J]. 实用老年医学, 2023, 37(4): 335-338. |
[10] | 朱贺, 殷实. 认知障碍与抑郁症关系的研究进展[J]. 实用老年医学, 2023, 37(3): 234-237. |
[11] | 郭晓娟, 刘洁, 王瑾, 陆文惠, 高玲, 屈秋民. 西安地区阿尔茨海默病病人药物依从性调查及影响因素分析[J]. 实用老年医学, 2023, 37(1): 47-50. |
[12] | 叶念思, 胡慧, 邓蓓, 刘雪婷, 周诗, 李雨灿, 王晓梦. 轻度认知障碍老年人口腔健康相关生活质量现状及影响因素分析[J]. 实用老年医学, 2024, 38(7): 674-678. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|