[1] CAI Y, SONG W, LI J, et al. The landscape of aging[J]. Sci China Life Sci, 2022, 65(12): 2354-2454. [2] THIJSSEN D H, CARTER S E, GREEN D J. Arterial structure and function in vascular ageing: are you as old as your arteries?[J]. J Physiol, 2016, 594(8): 2275-2284. [3] CHEN M S, LEE R T, GARBERN J C. Senescence mechanisms and targets in the heart[J]. Cardiovasc Res, 2022, 118(5): 1173-1187. [4] HUANG W, HICKSON L J, EIRIN A, et al. Cellular senescence: the good, the bad and the unknown[J]. Nat Rev Nephrol, 2022, 18(10): 611-627. [5] MEHDIZADEH M, AGUILAR M, THORIN E, et al. The role of cellular senescence in cardiac disease: basic biology and clinical relevance[J]. Nat Rev Cardiol, 2022, 19(4): 250-264. [6] VELLASAMY D M, LEE S J, GOH K W, et al. Targeting immune senescence in atherosclerosis[J]. Int J Mol Sci, 2022, 23(21):13059. [7] ANDERSON R, LAGNADO A, MAGGIORANI D, et al. Length-independent telomere damage drives post-mitotic cardiomyocyte senescence[J]. EMBO J, 2019, 38(5): e100492. [8] ROSSIELLO F, JURK D, PASSOS J F, et al. Telomere dysfunction in ageing and age-related diseases[J]. Nat Cell Biol, 2022, 24(2): 135-147. [9] BOOTH L K, REDGRAVE R E, TUAL-CHALOT S, et al. Heart disease and ageing: the roles of senescence, mitochondria, and telomerase in cardiovascular disease[J]. Subcell Biochem, 2023, 103: 45-78. [10] HORVATH S, RAJ K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing[J]. Nat Rev Genet, 2018, 19(6): 371-384. [11] EL-NACHEF D, OYAMA K, WU Y Y, et al. Repressive histone methylation regulates cardiac myocyte cell cycle exit[J]. J Mol Cell Cardiol, 2018, 121: 1-12. [12] ALCENDOR R R, GAO S, ZHAI P, et al. Sirt1 regulates aging and resistance to oxidative stress in the heart[J]. Circ Res, 2007, 100(10): 1512-1521. [13] FLORIO M C, MAGENTA A, BEJI S, et al. Aging, microRNAs, and heart failure[J]. Curr Probl Cardiol, 2020, 45(12): 100406. [14] LOZANO-VIDAL N, BINK D I, BOON R A. Long noncoding RNA in cardiac aging and disease[J]. J Mol Cell Biol, 2019, 11(10): 860-867. [15] SONG M, FRANCO A, FLEISCHER J A, et al. Abrogating mitochondrial dynamics in mouse hearts accelerates mitochondrial senescence[J]. Cell Metab, 2017, 26(6): 872-883. [16] MOTURI S, GHOSH-CHOUDHARY S K, FINKEL T. Cardiovascular disease and the biology of aging[J]. J Mol Cell Cardiol, 2022, 167: 109-117. [17] GAO B, YU W, LV P, et al. Parkin overexpression alleviates cardiac aging through facilitating K63-polyubiquitination of TBK1 to facilitate mitophagy[J]. Biochim Biophys Acta Mol Basis Dis, 2021, 1867(1): 165997. [18] WANG B,KOHLI J, DEMARIA M. Senescent cells in cancer therapy: friends or foes?[J]. Trends Cancer, 2020, 6(10): 838-857. [19] CHATTERJEE S, HOFER T, COSTA A, et al. Telomerase therapy attenuates cardiotoxic effects of doxorubicin[J]. Mol Ther, 2021, 29(4): 1395-1410. [20] CAMELL C D, YOUSEFZADEH M J, ZHU Y, et al. Senolytics reduce coronavirus-related mortality in old mice[J]. Science, 2021, 373(6552): eabe4832. [21] KHAVINSON V, LINKOVA N, DYATLOVA A, et al. Senescence-associated secretory phenotype of cardiovascular system cells and inflammaging: perspectives of peptide regulation[J]. Cells, 2022, 12(1): 106. [22] REHKOPF D H, NEEDHAM B L, LIN J, et al. Leukocyte telomere length in relation to 17 biomarkers of cardiovascular disease risk: a cross-sectional study of US adults[J]. PLoS Med, 2016, 13(11): e1002188. [23] LUCAS V, CAVADAS C, AVELEIRA C A. Cellular senescence: from mechanisms to current biomarkers and senotherapies[J]. Pharmacol Rev, 2023, 75(4):675-713. [24] EVANGELOU K, VASILEIOU P, PAPASPYROPOULOS A, et al. Cellular senescence and cardiovascular diseases: moving to the “heart” of the problem[J]. Physiol Rev, 2023, 103(1): 609-647. [25] CHANG J, WANG Y, SHAO L, et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice[J]. Nat Med, 2016, 22(1): 78-83. [26] MARTIN N, SORIANI O, BERNARD D. Cardiac glycosides as senolytic compounds[J]. Trends Mol Med, 2020, 26(3): 243-245. [27] FUHRMANN-STROISSNIGG H, LING Y Y, ZHAO J, et al. Identification of HSP90 inhibitors as a novel class of senolytics[J]. Nat Commun, 2017, 8(1): 422. [28] HAN Y M, BEDARIDA T, DING Y, et al. Beta-Hydroxybutyrate prevents vascular senescence through hnRNP A1-mediated upregulation of Oct4[J]. Mol Cell, 2018, 71(6): 1064-1078. [29] CAI Y, ZHOU H, ZHU Y, et al. Elimination of senescent cells by beta-galactosidase-targeted prodrug attenuates inflammation and restores physical function in aged mice[J]. Cell Res, 2020, 30(7): 574-589. [30] AMOR C, FEUCHT J, LEIBOLD J, et al. Senolytic CAR T cells reverse senescence-associated pathologies[J]. Nature, 2020, 583(7814): 127-132. [31] MENDELSOHN A R, LARRICK J W. Antiaging vaccines targeting senescent cells[J]. Rejuvenation Res, 2022, 25(1): 39-45. [32] CHAIB S, TCHKONIA T,KIRKLAND J L. Cellular senescence and senolytics: the path to the clinic[J]. Nat Med, 2022, 28(8): 1556-1568. [33] TAI S, SUN J, ZHOU Y, et al. Metformin suppresses vascular smooth muscle cell senescence by promoting autophagic flux[J]. J Adv Res, 2022, 41: 205-218. [34] CHI B, ZOU A, MAO L, et al. Empagliflozin-pretreated mesenchymal stem cell-derived small extracellular vesicles attenuated heart injury[J]. Oxid Med Cell Longev, 2023, 2023: 7747727. |