[1] BERGER M J, DOHERTY T J. Sarcopenia: prevalence, mechanisms, and functional consequences[J]. Interdiscip Top Gerontol, 2010, 37:94-114. [2] XIE W Q, XIAO W F, TANG K, et al. Caloric restriction: implications for sarcopenia and potential mechanisms[J]. Aging: Albany NY, 2020, 12(23): 24441-24452. [3] KULKARNI S, SENEVIRATNE N, BAIG M S, et al. Artificial intelligence in medicine: where are we now?[J]. Acad Radiol, 2020, 27(1):62-70. [4] VOGELE D, OTTO S, SOLLMANN N, et al. Sarcopenia - definition, radiological diagnosis, clinical significance[J]. Rofo, 2023, 195(5):393-405. [5] 潘云菲, 胡梦杰, 赵费敏, 等. 人工智能在肌少症诊断中的应用现状与前景[J]. 浙江医学, 2022, 44(23):2577-2582. [6] SANTHANAM P, NATH T, PENG C, et al. Artificial intelligence and body composition[J]. Diabetes Metab Syndr, 2023, 17(3):102732. [7] BLANC-DURAND P, SCHIRATTI J B, SCHUTTE K, et al. Abdominal musculature segmentation and surface prediction from CT using deep learning for sarcopenia assessment[J]. Diagn Interv Imaging, 2020, 101(12):789-794. [8] 徐媛, 刘建莉. 影像学和人工智能技术定量评估肝硬化肌少症的研究进展[J]. 磁共振成像, 2022, 13(11):149-153. [9] ZHANG R, HE A, XIA W, et al. Deep learning-based fully automated segmentation of regional muscle volume and spatial intermuscular fat using CT[J]. Acad Radiol, 2023, 30(10):2280-2289. [10] YE Z, SARAF A, RAVIPATI Y, et al. Fully-automated sarcopenia assessment in head and neck cancer: development and external validation of a deep learning pipeline[J]. medRxiv, 2023. DOI: 10.1101/2023.03.01.23286638. [11] BORRELLI A, PECORARO M, DEL GIUDICE F, et al. Standardization of body composition status in patients with advanced urothelial tumors: the role of a CT-based AI-powered software for the assessment of sarcopenia and patient outcome correlation[J]. Cancers: Basel, 2023, 15(11):2968. [12] GU S, WANG L, HAN R, et al. Detection of sarcopenia using deep learning-based artificial intelligence body part measure system (AIBMS)[J]. Front Physiol, 2023, 14:1092352. [13] HASHIMOTO F, KAKIMOTO A, OTA N, et al. Automated segmentation of 2D low-dose CT images of the psoas-major muscle using deep convolutional neural networks[J]. Radiol Phys Technol, 2019, 12(2):210-215. [14] BEDRIKOVETSKI S, SEOW W, KROON H M, et al. Artificial intelligence for body composition and sarcopenia evaluation on computed tomography: a systematic review and meta-analysis[J]. Eur J Radiol, 2022, 149:110218. [15] BAE J H, SEO J W, KIM D Y. Deep-learning model for predicting physical fitness in possible sarcopenia: analysis of the Korean physical fitness award from 2010 to 2023[J]. Front Public Health, 2023, 11:1241388. [16] ZHANG H, YIN M, LIU Q, et al. Machine and deep learning-based clinical characteristics and laboratory markers for the prediction of sarcopenia[J]. Chin Med J: Engl, 2023, 136(8):967-973. [17] SAKAI K, GILMOUR S, HOSHINO E, et al. A machine learning-based screening test for sarcopenic dysphagia using image recognition[J]. Nutrients, 2021, 13(11):4009. [18] NACHIT M, HORSMANS Y, SUMMERS R M, et al. AI-based CT body composition identifies myosteatosis as key mortality predictor in asymptomatic adults[J]. Radiology, 2023, 307(5):e222008. [19] KIM S, PARK S, LEE S, et al. Assessing physical abilities of sarcopenia patients using gait analysis and smart insole for development of digital biomarker[J]. Sci Rep, 2023, 13(1):10602. [20] KIM J K, BAE M N, LEE K, et al. Explainable artificial intelligence and wearable sensor-based gait analysis to identify patients with osteopenia and sarcopenia in daily life[J]. Biosensors: Basel, 2022, 12(3):167. [21] UC,AR M K, UC,AR K, UC,AR Z, et al. Determination gender-based hybrid artificial intelligence of body muscle percentage by photoplethysmography signal[J]. Comput Methods Programs Biomed, 2022, 224:107010. [22] YI J, SHIN Y, HAHN S, et al. Deep learning based sarcopenia prediction from shear-wave ultrasonographic elastography and gray scale ultrasonography of rectus femoris muscle[J]. Sci Rep, 2022, 12(1):3596. [23] CHUNG H, JO Y, RYU D, et al. Artificial-intelligence-driven discovery of prognostic biomarker for sarcopenia[J]. J Cachexia Sarcopenia Muscle, 2021, 12(6):2220-2230. [24] ZUPO R, MORONI A, CASTELLANA F, et al. A machine-learning approach to target clinical and biological features associated with sarcopenia: findings from Northern and Southern Italian aging populations[J]. Metabolites, 2023, 13(4):565. [25] CHO M R, LEE S, SONG S K. A review of sarcopenia pathophysiology, diagnosis, treatment and future direction[J]. J Korean Med Sci, 2022, 37(18):e146. [26] PETERSEN C L, HALTER R, KOTZ D, et al. Using natural language processing and sentiment analysis to augment traditional user-centered design: development and usability study[J]. JMIR Mhealth Uhealth, 2020, 8(8):e16862. [27] LIAO P H, HUANG Y J, HO C S, et al. Application of machine learning and its effects on the development of a nursing guidance mobile app for sarcopenia[J]. BMC Nurs, 2023, 22(1):369.[28] MENDE E, MOEINNIA N, SCHALLER N, et al. Progressive machine-based resistance training for prevention and treatment of sarcopenia in the oldest old: a systematic review and meta-analysis[J]. Exp Gerontol, 2022, 163:111767. [29] CHAE H J, KIM J B, PARK G, et al. An artificial intelligence exercise coaching mobile App: development and randomized controlled trial to verify its effectiveness in posture correction[J]. Interact J Med Res, 2023, 12:e37604. [30] KIM B R, YOO T K, KIM H K, et al. Oculomics for sarcopenia prediction: a machine learning approach toward predictive, preventive, and personalized medicine[J]. EPMA J, 2022, 13(3):367-382. [31] KANG Y J, YOO J I, HA Y C. Sarcopenia feature selection and risk prediction using machine learning: a cross-sectional study[J]. Medicine: Baltimore, 2019, 98(43):e17699. [32] BUCCHERI E, DELL’AQUILA D, RUSSO M, et al. Can artificial intelligence simplify the screening of muscle mass loss?[J]. Heliyon, 2023, 9(5):e16323. [33] MIAO S, JIA H, CHENG K, et al. Deep learning radiomics under multimodality explore association between muscle/fat and metastasis and survival in breast cancer patients[J]. Brief Bioinform, 2022, 23(6):bbac432. [34] PICKHARDT P J, CORREALE L, HASSAN C. AI-based opportunistic CT screening of incidental cardiovascular disease, osteoporosis, and sarcopenia: cost-effectiveness analysis[J]. Abdom Radiol: NY, 2023, 48(3):1181-1198. [35] PICKHARDT P J, PEREZ A A, GARRETT J W, et al. Fully automated deep learning tool for sarcopenia assessment on CT: L1 versus L3 vertebral level muscle measurements for opportunistic prediction of adverse clinical outcomes[J]. AJR Am J Roentgenol, 2022, 218(1):124-131. [36] RYU J, EOM S, KIM H C, et al. Chest X-ray-based opportunistic screening of sarcopenia using deep learning[J]. J Cachexia Sarcopenia Muscle, 2023, 14(1):418-428. |