[1] 宁吉喆.中华人民共和国第七次全国人口普查主要数据情况[R/OL]. (2021-05-11).https://www.gov.cn/xinwen/2021-05/11/content_5605760.htm. [2] 刘娟, 丁清清, 周白瑜, 等.中国老年人肌少症诊疗专家共识(2021)[J]. 中华老年医学杂志, 2021, 40(8): 943-952. [3] CRUZ-JENTOFT A J, BAHAT G, BAUER J, et al. Sarcopenia: revised European consensus on definition and diagnosis[J]. Age Ageing, 2019, 48(1): 16-31. [4] WIEDMER P, JUNG T, CASTRO J P, et al. Sarcopenia - molecular mechanisms and open questions[J]. Ageing Res Rev, 2021, 65:101200. [5] CALVANI R, JOSEPH A M, ADHIHETTY P J, et al. Mitochondrial pathways in sarcopenia of aging and disuse muscle atrophy[J]. Biol Chem, 2013, 394(3): 393-414. [6] CHOCRON E S, MUNKÃCSY E, PICKERING A M.Cause or casualty: the role of mitochondrial DNA in aging and age-associated disease[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(2): 285-297. [7] DEEPA S S, VAN REMMEN H, BROOKS S V, et al. Accelerated sarcopenia in Cu/Zn superoxide dismutase knockout mice[J]. Free Radic Biol Med, 2019, 132:19-23. [8] TILOKANI L, NAGASHIMA S, PAUPE V, et al. Mitochondrial dynamics: overview of molecular mechanisms[J]. Essays Biochem, 2018, 62(3): 341-360. [9] HUANG D D, FAN S D, CHEN X Y, et al. Nrf2 deficiency exacerbates frailty and sarcopenia by impairing skeletal muscle mitochondrial biogenesis and dynamics in an age-dependent manner[J]. Exp Gerontol, 2019, 119:61-73. [10] CHEN H, VERMULST M, WANG Y E, et al. Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations[J]. Cell, 2010, 141(2): 280-289. [11] TEZZE C, ROMANELLO V, DESBATS M A, et al. Age-associated loss of OPA1 in muscle impacts muscle mass, metabolic homeostasis, systemic inflammation, and epithelial senescence[J]. Cell Metab, 2017, 25(6): 1374-1389. [12] PINTI M V, FINK G K, HATHAWAY Q A, et al. Mitochondrial dysfunction in type 2 diabetes mellitus:an organ-based analysis[J]. Am J Physiol Endocrinol Metab, 2019, 316(2): E268-E285. [13] SARTORI R, ROMANELLO V, SANDRI M.Mechanisms of muscle atrophy and hypertrophy: implications in health and disease[J]. Nat Commun, 2021, 12(1): 330. [14] MIGLIAVACCA E, TAY S K H, PATEL H P, et al. Mitochondrial oxidative capacity and NAD+biosynthesis are reduced in human sarcopenia across ethnicities[J]. Nat Commun, 2019, 10(1): 5808. [15] YEO D, KANG C, GOMEZ-CABRERA M C, et al. Intensified mitophagy in skeletal muscle with aging is downregulated by PGC-1alpha overexpression in vivo[J]. Free Radic Biol Med, 2019, 130:361-368. [16] NEEL B A, ZONG H, BACKER J M, et al. Identification of atypical peri-nuclear multivesicular bodies in oxidative and glycolytic skeletal muscle of aged and Pompe’s disease mouse models[J]. Front Physiol, 2015, 6:393. [17] CHEEMA N, HERBST A, MCKENZIE D, et al. Apoptosis and necrosis mediate skeletal muscle fiber loss in age-induced mitochondrial enzymatic abnormalities[J]. Aging Cell, 2015, 14(6): 1085-1093. [18] HERBST A, WANAGAT J, CHEEMA N, et al. Latent mitochondrial DNA deletion mutations drive muscle fiber loss at old age[J]. Aging Cell, 2016, 15(6): 1132-1139. [19] PICARD M, RITCHIE D, THOMAS M M, et al. Alterations in intrinsic mitochondrial function with aging are fiber type-specific and do not explain differential atrophy between muscles[J]. Aging Cell, 2011, 10(6): 1047-1055. [20] BRUUSGAARD J C, EGNER I M, LARSEN T K, et al. No change in myonuclear number during muscle unloading and reloading[J]. J Appl Physiol, 2012, 113(2): 290-296. [21] CONBOY I M, CONBOY M J, WAGERS A J, et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment[J]. Nature, 2005, 433(7027): 760-764. [22] BANO G, TREVISAN C, CARRARO S, et al. Inflammation and sarcopenia: a systematic review and meta-analysis[J]. Maturitas, 2017, 96:10-15. [23] THOMA A, LIGHTFOOT A P.NF-kB and inflammatory cytokine signalling: role in skeletal muscle atrophy[J]. Adv Exp Med Biol, 2018, 1088:267-279. [24] PIOTROWICZ K, GASOWSKI J, MICHEL J P, et al. Post-COVID-19 acute sarcopenia: physiopathology and management[J]. Aging Clin Exp Res, 2021, 33(10): 2887-2898. [25] SZLEJF C, SUEMOTO C K, JANOVSKY C C P S, et al. Thyroid function and sarcopenia: results from the ELSA-Brasil study[J]. J Am Geriatr Soc, 2020, 68(7): 1545-1553. [26] HUANG L T, WANG J H.The therapeutic intervention of sex steroid hormones for sarcopenia[J]. Front Med:Lausanne, 2021, 8:739251. [27] HONG S H, CHOI K M.Sarcopenic obesity, insulin resistance, and their implications in cardiovascular and metabolic consequences[J]. Int J Mol Sci, 2020, 21(2): 494. [28] KAO T W, PENG T C, CHEN W L, et al. Higher serum leptin levels are associated with a reduced risk of sarcopenia but a higher risk of dynapenia among older adults[J]. J Inflamm Res, 2021, 14:5817-5825. [29] ASCENZI F, BARBERI L, DOBROWOLNY G V, et al. Effects of IGF-1 isoforms on muscle growth and sarcopenia[J]. Aging Cell, 2019, 18(3): e12954. [30] EKIZ T, KARA M, ATA A M, et al. Rewinding sarcopenia: a narrative review on the renin-angiotensin system[J]. Aging Clin Exp Res, 2021, 33(9): 2379-2392. [31] TROVATO F M, CASTROGIOVANNI P, SZYCHLINSKA M A, et al. Impact of Western and Mediterranean diets and vitamin D on muscle fibers of sedentary rats[J]. Nutrients, 2018, 10(2): 231. [32] DEVAN A E, ESKURZA I, PIERCE G L, et al. Regular aerobic exercise protects against impaired fasting plasma glucose-associated vascular endothelial dysfunction with aging[J]. Clin Sci:Lond, 2013, 124(5): 325-331. [33] JEON Y K, SHIN M J, SAINI S K, et al. Vascular dysfunction as a potential culprit of sarcopenia[J]. Exp Gerontol, 2021, 145:111220. [34] CANNATARO R, CARBONE L, PETRO J L, et al. Sarcopenia: etiology, nutritional approaches, and miRNAs[J]. Int J Mol Sci, 2021, 22(18): 9724. |