实用老年医学 ›› 2023, Vol. 37 ›› Issue (12): 1260-1265.doi: 10.3969/j.issn.1003-9198.2023.12.017
张烟烟, 杜毓锋
收稿日期:
2023-02-02
出版日期:
2023-12-20
发布日期:
2023-12-12
通讯作者:
杜毓锋,Email:yufengdu0126@163.com
基金资助:
Received:
2023-02-02
Online:
2023-12-20
Published:
2023-12-12
中图分类号:
张烟烟, 杜毓锋. COPD相关肌肉减少症发病机制的研究进展[J]. 实用老年医学, 2023, 37(12): 1260-1265.
[1] SEPULVEDA-LOYOLA W, OSADNIK C, PHU S, et al. Diagnosis, prevalence, and clinical impact of sarcopenia in COPD: a systematic review and meta-analysis[J]. J Cachexia Sarcopenia Muscle, 2020, 11(5):1164-1176. [2] LEE D W, CHOI E Y. Sarcopenia as an independent risk factor for decreased BMD in COPD patients: Korean National Health and Nutrition Examination Surveys IV and V (2008-2011)[J]. PLoS One, 2016, 11(10):e164303. [3] BENZ E, TRAJANOSKA K, LAHOUSSE L, et al. Sarcopenia in COPD: a systematic review and meta-analysis[J]. Eur Respir Rev, 2019, 28(154):190049. [4] BYUN M K, CHO E N, CHANG J, et al. Sarcopenia correlates with systemic inflammation in COPD[J]. Int J Chron Obstruct Pulmon Dis, 2017, 12:669-675. [5] LIN B, BAI L, WANG S, et al. The association of systemic interleukin 6 and interleukin 10 levels with sarcopenia in elderly patients with chronic obstructive pulmonary disease[J]. Int J Gen Med, 2021, 14:5893-5902. [6] PASSEY S L, HANSEN M J, BOZINOVSKI S, et al. Emerging therapies for the treatment of skeletal muscle wasting in chronic obstructive pulmonary disease[J]. Pharmacol Ther, 2016, 166:56-70. [7] GAO J, DENG M, LI Y, et al. Resistin as a systemic inflammation-related biomarker for sarcopenia in patients with chronic obstructive pulmonary disease[J]. Front Nutr, 2022, 9:921399. [8] BARBIERI M, FERRUCCI L, RAGNO E, et al. Chronic inflammation and the effect of IGF-I on muscle strength and power in older persons[J]. Am J Physiol Endocrinol Metab, 2003, 284(3):E481-E487. [9] MA K, HUANG F X, QIAO R P, et al. Pathogenesis of sarcopenia in chronic obstructive pulmonary disease[J]. Front Physiol, 2022, 13:850964. [10] DALLE S, KOPPO K. Is inflammatory signaling involved in disease-related muscle wasting? Evidence from osteoarthritis, chronic obstructive pulmonary disease and type II diabetes[J]. Exp Gerontol, 2020, 137:110964. [11] CEELEN J, SCHOLS A, THIELEN N, et al. Pulmonary inflammation-induced loss and subsequent recovery of skeletal muscle mass require functional poly-ubiquitin conjugation[J]. Respir Res, 2018, 19(1):80. [12] LANGEN R C, HAEGENS A, VERNOOY J H, et al. NF-κB activation is required for the transition of pulmonary inflammation to muscle atrophy[J]. Am J Respir Cell Mol Biol, 2012, 47(3):288-297. [13] CASTETS P, RUEGG M A. MTORC1 determines autophagy through ULK1 regulation in skeletal muscle[J]. Autophagy, 2013, 9(9):1435-1437. [14] MILAN G, ROMANELLO V, PESCATORE F, et al. Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy[J]. Nat Commun, 2015, 6:6670. [15] SCICCHITANO B M, PELOSI L, SICA G, et al. The physiopathologic role of oxidative stress in skeletal muscle[J]. Mech Ageing Dev, 2018, 170:37-44. [16] MALTAIS F, DECRAMER M, CASABURI R, et al. An official American Thoracic Society/European Respiratory Society statement: update on limb muscle dysfunction in chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2014, 189(9):e15-e62. [17] BARNES P J. Oxidative stress in chronic obstructive pulmonary disease[J]. Antioxidants:Basel, 2022, 11(5):965. [18] LAGE V, DE PAULA F A, DOS S J, et al. Are oxidative stress biomarkers and respiratory muscles strength associated with COPD-related sarcopenia in older adults?[J]. Exp Gerontol, 2022, 157:111630. [19] SEPULVEDA-LOYOLA W, DE CASTRO L A, MATSUMOTO A K, et al. NOVEL antioxidant and oxidant biomarkers related to sarcopenia in COPD[J]. Heart Lung, 2021, 50(1):184-191. [20] MANO Y, TSUKAMOTO M, WANG K Y, et al. Oxidative stress causes muscle structural alterations via p38 MAPK signaling in COPD mouse model[J]. J Bone Miner Metab, 2022, 40(6):927-939. [21] YOSHIDA T, DELAFONTAINE P. Mechanisms of IGF-1-mediated regulation of skeletal muscle hypertrophy and atrophy[J]. Cells, 2020, 9(9):1970. [22] SEPU'LVEDA L W, SERGIO P, PROBST V S. Mecanismos fisiopatológicos de la sarcopenia en la EPOC[J]. Revista Chilena De Enfermedades Respiratorias, 2019, 35(2):124-132. [23] YANG S, WU H, ZHAO J, et al. Feasibility of 8-OHdG formation and hOGG1 induction in PBMCs for assessing oxidative DNA damage in the lung of COPD patients[J]. Respirology, 2014, 19(8):1183-1190. [24] DODD S L, GAGNON B J, SENF S M, et al. Ros-mediated activation of NF-kappaB and Foxo during muscle disuse[J]. Muscle Nerve, 2010, 41(1):110-113. [25] ITO A, HASHIMOTO M, TANIHATA J, et al. Involvement of Parkin-mediated mitophagy in the pathogenesis of chronic obstructive pulmonary disease-related sarcopenia[J]. J Cachexia Sarcopenia Muscle, 2022, 13(3):1864-1882. [26] THERIAULT M E, PARE M E, MALTAIS F, et al. Satellite cells senescence in limb muscle of severe patients with COPD[J]. PLoS One, 2012, 7(6):e39124. [27] JU C R, CHEN R C. Serum myostatin levels and skeletal muscle wasting in chronic obstructive pulmonary disease[J]. Respir Med, 2012, 106(1):102-108. [28] THERIAULT M E, PARE M E, LEMIRE B B, et al. Regenerative defect in vastus lateralis muscle of patients with chronic obstructive pulmonary disease[J]. Respir Res, 2014, 15(1):35. [29] SANCHO-MUNOZ A, GUITART M, RODRIGUEZ D A, et al. Deficient muscle regeneration potential in sarcopenic COPD patients: role of satellite cells[J]. J Cell Physiol, 2021, 236(4):3083-3098. [30] WUST R C, DEGENS H. Factors contributing to muscle wasting and dysfunction in COPD patients[J]. Int J Chron Obstruct Pulmon Dis, 2007, 2(3):289-300. [31] LANGEN R C, GOSKER H R, REMELS A H, et al. Triggers and mechanisms of skeletal muscle wasting in chronic obstructive pulmonary disease[J]. Int J Biochem Cell Biol, 2013, 45(10):2245-2256. [32] SCODITTI E, MASSARO M, GARBARINO S, et al. Role of diet in chronic obstructive pulmonary disease prevention and treatment[J]. Nutrients, 2019, 11(6):1357. [33] CEDERHOLM T, JENSEN G L, CORREIA M, et al. GLIM criteria for the diagnosis of malnutrition - A consensus report from the global clinical nutrition community[J]. Clin Nutr, 2019, 38(1):1-9. [34] 首健, 陈佩杰, 肖卫华. 糖皮质激素对骨骼肌代谢的调控及其机制[J]. 中国药理学通报, 2019, 35(5):602-606. [35] TAOUIS M, BENOMAR Y. Is resistin the master link between inflammation and inflammation-related chronic diseases?[J]. Mol Cell Endocrinol, 2021, 533:111341. [36] WEN F Y, ZHANG H W, BAO C, et al. Resistin increases ectopic deposition of lipids through miR-696 in C2C12 cells[J]. Biochem Genet, 2015, 53(4-6):63-71. [37] XUE M, ZHANG F, JI X, et al. Oleate ameliorates palmitate-induced impairment of differentiative capacity in c2c12 myoblast cells[J]. Stem Cells Dev, 2021, 30(5):289-300. [38] TAN D, ARMITAGE J, TEO T H, et al. Elevated levels of circulating exosome in COPD patients are associated with systemic inflammation[J]. Respir Med, 2017, 132:261-264. [39] 邓明明. 慢阻肺患者肌肉减少症的临床评价及血浆外泌体在其发生发展中的作用与机制研究[D]. 北京:北京协和医学院, 2022. [40] DE PAEPE B. The cytokine growth differentiation factor-15 and skeletal muscle health: portrait of an emerging widely applicable disease biomarker[J]. Int J Mol Sci, 2022, 23(21):13180. [41] DENG M, BIAN Y, ZHANG Q, et al. Growth differentiation factor-15 as a biomarker for sarcopenia in patients with chronic obstructive pulmonary disease[J]. Front Nutr, 2022, 9:897097. [42] PATEL M S, LEE J, BAZ M, et al. Growth differentiation factor-15 is associated with muscle mass in chronic obstructive pulmonary disease and promotes muscle wasting in vivo[J]. J Cachexia Sarcopenia Muscle, 2016, 7(4):436-448. [43] NAKATANI T, NAKASHIMA T, KITA T, et al. Responses of exposure to cigarette smoke at three dosage levels on soleus muscle fibers in Wistar-Kyoto and spontaneously hypertensive rats[J]. Jpn J Pharmacol, 2002, 90(2):157-163. [44] KAISARI S, ROM O, AIZENBUD D, et al. Involvement of NF-κB and muscle specific E3 ubiquitin ligase MuRF1 in cigarette smoke-induced catabolism in C2 myotubes[J]. Adv Exp Med Biol, 2013, 788:7-17. [45] CHAN S, CERNI C, PASSEY S, et al. Cigarette smoking exacerbates skeletal muscle injury without compromising its regenerative capacity[J]. Am J Respir Cell Mol Biol, 2020, 62(2):217-230. |
[1] | 袁勇贵, 汪天宇. 前言——关注老年慢性病病人心身健康问题刻不容缓[J]. 实用老年医学, 2024, 38(10): 973-973. |
[2] | 许芳, 宋博文, 李璐瑶. 基于中医心身整体观的老年慢性病与心理健康关系研究[J]. 实用老年医学, 2024, 38(10): 990-992. |
[3] | 寇夕, 刘永宏, 董玮, 王华, 王宝梅, 高玉芳. 住院老年病人衰弱综合征与胰岛素样生长因子-1的相关性研究[J]. 实用老年医学, 2024, 38(5): 474-437. |
[4] | 庄鑫, 宗智颖, 徐花, 郑娟, 吴金芳, 刘恺航, 赵静, 张丽霞. 前馈控制训练对老年人跌倒风险的影响[J]. 实用老年医学, 2024, 38(5): 478-437. |
[5] | 杨琳琳, 张土明, 蔡钰莹, 罗金花, 杨宇. 社会支持与老年衰弱的研究进展[J]. 实用老年医学, 2024, 38(5): 525-437. |
[6] | 李婕, 王潇, 俞静, 刘娟, 陈姝, 佟蔷薇. 不同静息能量消耗预测方程在老年衰弱病人中的准确性比较[J]. 实用老年医学, 2024, 38(3): 293-295. |
[7] | 田甜, 张飞, 李铭麟, 张璇, 王佳贺. 人工智能助力改善老年听力障碍的研究进展[J]. 实用老年医学, 2024, 38(2): 114-118. |
[8] | 陈丽华, 李娟, 余欢, 邹敏, 刘纪汝, 田芳, 唐欢. 老年肌少性吞咽障碍危险因素的研究进展[J]. 实用老年医学, 2023, 37(12): 1255-1259. |
[9] | 赵亚璇, 张利, 吴根丽, 周静蕾, 宋楠楠. 社区老年人内在能力下降对生活质量的影响[J]. 实用老年医学, 2023, 37(10): 1014-1018. |
[10] | 潘一鸣, 李耘, 马丽娜. 《世界老年人跌倒预防和管理指南:一项全球倡议》解读[J]. 实用老年医学, 2023, 37(10): 1076-1080. |
[11] | 李佳佳, 赵梅, 付悦琪, 赵婷婷. 老年病人术前衰弱与术后谵妄发生风险的研究进展[J]. 实用老年医学, 2023, 37(9): 951-955. |
[12] | 缪羽菲, 钱湘云. 认知情绪调节策略对老年共病病人衰弱的影响[J]. 实用老年医学, 2023, 37(8): 839-842. |
[13] | 张瑞华, 刘谦, 康琳, 杨茗, 高学文, 王佳贺, 潘慧云, 秦明照. 老年综合评估专项培训示范基地认定标准建议[J]. 实用老年医学, 2023, 37(8): 863-864. |
[14] | 于志超, 陈楠, 徐红. 新疆老年住院病人25羟维生素D及同型半胱氨酸与衰弱的相关性研究[J]. 实用老年医学, 2023, 37(7): 667-670. |
[15] | 廖晨芳, 徐宗政, 祁慧娟, 李庆祝, 王德国. 双能X线和胸部CT测定健康体检者骨骼肌质量的比较研究[J]. 实用老年医学, 2023, 37(7): 685-689. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|