[1] WANG C, XU J, YANG L, et al. Prevalence and risk factors of chronic obstructive pulmonary disease in China (the China Pulmonary Health[CPH] study): a national cross-sectional study[J]. Lancet, 2018, 391(10131): 1706-1717. [2] SHIMA H, TANABE N, OGUMA A, et al. Subtyping emphysematous COPD by respiratory volume change distributions on CT[J]. Thorax, 2023, 78(4): 344-353. [3] SINGLA S, GONG M, RILEY C, et al. Improving clinical disease subtyping and future events prediction through a chest CT-based deep learning approach[J]. Med Phys, 2021, 48(3): 1168-1181. [4] YANG Y, ZENG N, CHEN Z, et al. Multi-layer perceptron classifier with the proposed combined feature vector of 3D CNN features and lung radiomics features for COPD stage classification[J]. J Healthc Eng, 2023, 2023: 3715603. [5] CHOI H, KIM H, JIN K N, et al. A challenge for emphysema quantification using a deep learning algorithm with low-dose chest computed tomography[J]. J Thorac Imaging, 2022, 37(4): 253-261. [6] KANG H S, BAK S H, OH H Y, et al. Computed tomography-based visual assessment of chronic obstructive pulmonary disease: comparison with pulmonary function test and quantitative computed tomography[J]. J Thorac Dis, 2021, 13(3): 1495-1506. [7] ZHU D, QIAO C, DAI H, et al. Diagnostic efficacy of visual subtypes and low attenuation area based on HRCT in the diagnosis of COPD[J]. BMC Pulm Med, 2022, 22(1):81. [8] HERSH C P, MAKE B J, LYNCH D A, et al. Non-emphysematous chronic obstructive pulmonary disease is associated with diabetes mellitus[J]. BMC Pulm Med, 2014, 14: 164. [9] 刘阿茹, 魏华, 邓永红. HRCT肺气肿定量分析与COPD患者疾病相关性分析[J]. 中国CT和MRI杂志, 2021, 19(8): 74-76. [10] 王悦琪, 赵鹏, 宫凤玲, 等. MSCT定量评价肺气肿型慢性阻塞性肺疾病及其程度的价值[J]. 影像诊断与介入放射学, 2021, 30(5): 371-376. [11] LI W, MENG H, HUANG S, et al. Computed tomography (CT) quantitative assessment of single lobe emphysema correlates with chronic obstructive pulmonary disease (COPD) severity: a cross-sectional study with retrospective data collection[J]. Quant Imaging Med Surg, 2024, 14(7): 4540-4554. [12] CHEN H, CHEN R C, GUAN Y B, et al. Correlation of pulmonary function indexes determined by low-dose MDCT with spirometric pulmonary function tests in patients with chronic obstructive pulmonary disease[J]. AJR Am J Roentgenol, 2014, 202(4): 711-718. [13] SONG L, LEPPIG J A, HUBNER R H, et al. Quantitative CT analysis in patients with pulmonary emphysema: do calculated differences between full inspiration and expiration correlate with lung function?[J]. Int J Chron Obstruct Pulmon Dis, 2020, 15: 1877-1886. [14] XU X, YU T, DONG L, et al. Eosinophils promote pulmonary matrix destruction and emphysema via Cathepsin L[J]. Signal Transduct Target Ther, 2023, 8(1):390. [15] BOSCHETTO P, QUINTAVALLE S, ZENI E, et al. Association between markers of emphysema and more severe chronic obstructive pulmonary disease[J]. Thorax, 2006, 61(12):1037-1042. [16] STIVAL R S M, RABELO L M, LEÃO G L, et al. Quantitative assessment of emphysema and bronchial wall thickness in patients with stable chronic obstructive pulmonary disease: comparison between the eosinophilic and non-eosinophilic phenotypes[J]. Radiol Bras, 2022, 55(4): 209-215. [17] 魏霞, 李洁, 丁琦, 等. 伴嗜酸性粒细胞增高慢性阻塞性肺疾病急性加重期肺功能及影像学特征[J]. 中国医学影像技术, 2020, 36(3): 356-361. [18] LIU Y, LU C, CHEN W, et al. Clinical evaluation of pulmonary quantitative computed tomography parameters for diagnosing eosinophilic chronic obstructive pulmonary disease: characteristics and diagnostic performance[J]. Health Sci Rep, 2024, 7(3): e1734. [19] GERNHOLD L, NEUROHR C, TSITOURAS K, et al. Hypercapnia and lung function parameters in chronic obstructive pulmonary disease[J]. BMC Pulm Med, 2024, 24(1):345. [20] LOBZHANIDZE K, SULAQVELIDZE M, TABUKASHVILI R. Factors associated with decline of FEV1 in chronic obstructive pulmonary disease[J]. Georgian Med News, 2021(311):89-91. |