[1] SCHMIDT-ERFURTH U, SADEGHIPOUR A, GERENDAS B S, et al. Artificial intelligence in retina [J]. Prog Retin Eye Res, 2018, 67: 1-29. [2] AKKUS Z, GALIMZIANOVA A, HOOGI A, et al. Deep learning for brain MRI segmentation: state of the art and future directions [J]. J Digital Imaging, 2017, 30(4): 449-459. [3] SCHMIDHUBER J. Deep learning in neural networks: an overview [J]. Neural Netw, 2015, 61: 85-117. [4] 杨玉微, 云东源, 李龙辉, 等. 眼科人工智能在远程医疗中的应用[J].眼科学报,2022, 37(3): 238-244. [5] LECUN Y, BENGIO Y, HINTON G. Deep learning [J]. Nature, 2015, 521(7553): 436-444. [6] TING D S, CHEUNG G C, WONG T Y. Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: a review [J]. Clin Exp Ophthalmol, 2016, 44(4): 260-277. [7] ABRÀMOFF M D, FOLK J C, HAN D P, et al. Automated analysis of retinal images for detection of referable diabetic retinopathy [J]. JAMA Ophthalmol, 2013, 131(3): 351-357. [8] ABRAMOFF M D, LOU Y, ERGINAY A, et al. Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning [J]. Invest Ophthalmol Vis Sci, 2016, 57(13): 5200-5206. [9] GULSHAN V, PENG L, CORAM M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs [J]. JAMA, 2016, 316(22): 2402-2410. [10] GARGEYA R, LENG T. Automated identification of diabetic retinopathy using deep learning [J]. Ophthalmology, 2017, 124(7): 962-969. [11] REGUANT R, BRUNAK S, SAHA S. Understanding inherent image features in CNN-based assessment of diabetic retinopathy [J]. Sci Rep, 2021, 11(1): 9704. [12] TING D S W, CHEUNG C Y, LIM G, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes [J]. JAMA, 2017, 318(22): 2211-2223. [13] LI F, WANG Y, XU T, et al. Deep learning-based automated detection for diabetic retinopathy and diabetic macular oedema in retinal fundus photographs [J]. Eye:Lond, 2022, 36(7): 1433-1441. [14] DAI L, WU L, LI H, et al. A deep learning system for detecting diabetic retinopathy across the disease spectrum [J]. Nat Commun, 2021, 12(1): 3242. [15] RUAMVIBOONSUK P, TIWARI R, SAYRES R, et al. Real-time diabetic retinopathy screening by deep learning in a multisite national screening programme: a prospective interventional cohort study [J]. Lancet Digit Health, 2022, 4(4): e235-e244. [16] LIN S, MA Y, XU Y, et al. Artificial intelligence in community-based diabetic retinopathy telemedicine screening in urban China: cost-effectiveness and cost-utility analyses with real-world data [J]. JMIR Public Health Surveill, 2023, 9: e41624. [17] WONG W L, SU X, LI X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis [J]. Lancet Glob Health, 2014, 2(2): e106-e116. [18] BURLINA P M, JOSHI N, PEKALA M, et al. Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks [J]. JAMA Ophthalmol, 2017, 135(11): 1170-1176. [19] GRASSMANN F, MENGELKAMP J, BRANDL C, et al. A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular degeneration from color fundus photography [J]. Ophthalmology, 2018, 125(9): 1410-1420. [20] YIM J, CHOPRA R, SPITZ T, et al. Predicting conversion to wet age-related macular degeneration using deep learning [J]. Nat Med, 2020, 26(6): 892-899. [21] BOURNE R R A, FLAXMAN S R, BRAITHWAITE T, et al. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis [J]. Lancet Glob Health, 2017, 5(9): e888-e897. [22] THAM Y C, LI X, WONG T Y, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis [J]. Ophthalmology, 2014, 121(11): 2081-2090. [23] LI Z, HE Y, KEEL S, et al. Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs [J]. Ophthalmology, 2018, 125(8): 1199-1206. [24] SHIBATA N, TANITO M, MITSUHASHI K, et al. Development of a deep residual learning algorithm to screen for glaucoma from fundus photography [J]. Sci Rep, 2018, 8(1): 14665. [25] ELZE T, PASQUALE L R, SHEN L Q, et al. Patterns of functional vision loss in glaucoma determined with archetypal analysis [J]. J R Soc Interface, 2015, 12(103):20141118. [26] YOUSEFI S, KIWAKI T, ZHENG Y, et al. Detection of longitudinal visual field progression in glaucoma using machine learning [J]. Am J Ophthalmol, 2018, 193: 71-79. [27] KAZEMIAN P, LAVIERI M S, VAN OYEN M P, et al. Personalized prediction of glaucoma progression under different target intraocular pressure levels using filtered forecasting methods [J]. Ophthalmology, 2018, 125(4): 569-577. [28] SCHELL G J, LAVIERI M S, STEIN J D, et al. Filtering data from the collaborative initial glaucoma treatment study for improved identification of glaucoma progression [J]. BMC Med Inform Decis Mak, 2013, 13: 137. |