实用老年医学 ›› 2023, Vol. 37 ›› Issue (4): 402-406.doi: 10.3969/j.issn.1003-9198.2023.04.020
许杨丹, 杨晓娟
收稿日期:
2022-04-15
出版日期:
2023-04-20
发布日期:
2023-03-31
通讯作者:
杨晓娟,email:yxj2011bs@126.com
基金资助:
Received:
2022-04-15
Online:
2023-04-20
Published:
2023-03-31
中图分类号:
许杨丹, 杨晓娟. miR-15/107家族在阿尔茨海默病中的研究进展[J]. 实用老年医学, 2023, 37(4): 402-406.
[1] KANG S S, AHN E H, YE K. Delta-secretase cleavage of Tau mediates its pathology and propagation in Alzheimer’s disease[J]. Exp Mol Med, 2020, 52(8):1275-1287. [2] RODA A R, SERRA-MIR G, MONTOLIU-GAYA L, et al. Amyloid-beta peptide and tau protein crosstalk in Alzheimer’s disease[J]. Neural Regen Res, 2022,17(8):1666-1674. [3] BABULAL G M, QUIROZ Y T, ALBENSI B C, et al. Perspectives on ethnic and racial disparities in Alzheimer’s disease and related dementias: update and areas of immediate need[J]. Alzheimers Dement, 2019,15(2):292-312. [4] O’BRIEN J, HAYDER H, ZAYED Y, et al. Overview of microRNA biogenesis, mechanisms of actions, and circulation[J]. Front Endocrinol: Lausanne, 2018, 9:402. [5] CHEN K, RAJEWSKY N. The evolution of gene regulation by transcription factors and microRNAs[J]. Nat Rev Genet, 2007,8(2):93-103. [6] FINNERTY J R, WANG W X, HEBERT S S, et al. The miR-15/107 group of microRNA genes: evolutionary biology, cellular functions, and roles in human diseases[J]. J Mol Biol, 2010, 402(3):491-509. [7] GABRIELE R, ABEL E, FOX N C, et al. Knockdown of amyloid precursor protein: biological consequences and clinical opportunities[J]. Front Neurosci, 2022, 16:835645. [8] HAMPEL H, VASSAR R, DE STROOPER B, et al. The beta-secretase BACE1 in Alzheimer’s disease[J]. Biol Psychiatry, 2021, 89(8):745-756. [9] LIU W, LIU C, ZHU J, et al. MicroRNA-16 targets amyloid precursor protein to potentially modulate Alzheimer’s-associated pathogenesis in SAMP8 mice[J]. Neurobiol Aging, 2012,33(3):522-534. [10] ZHANG B, CHEN C F, WANG A H, et al. MiR-16 regulates cell death in Alzheimer’s disease by targeting amyloid precursor protein[J]. Eur Rev Med Pharmacol Sci, 2015,19(21):4020-4027. [11] MULLER M, KUIPERIJ H B, CLAASSEN J A, et al. MicroRNAs in Alzheimer’s disease: differential expression in hippocampus and cell-free cerebrospinal fluid[J]. Neurobiol Aging, 2014,35(1):152-158. [12] ZHONG Z, YUAN K, TONG X, et al. MiR-16 attenuates beta-amyloid-induced neurotoxicity through targeting beta-site amyloid precursor protein-cleaving enzyme 1 in an Alzheimer’s disease cell model[J]. Neuroreport, 2018,29(16):1365-1372. [13] SMITH P, AL H A, GIRARD J, et al. In vivo regulation of amyloid precursor protein neuronal splicing by microRNAs[J]. J Neurochem, 2011, 116(2):240-247. [14] JIANG Z P, ZHOU T B. Role of miR-107 and its signaling pathways in diseases[J]. J Recept Signal Transduct Res, 2014,34(5):338-341. [15] WANG W X, RAJEEV B W, STROMBERG A J, et al. The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1[J]. J Neurosci, 2008,28(5):1213-1223. [16] NELSON P T, WANG W X. MiR-107 is reduced in Alzheimer’s disease brain neocortex: validation study[J]. J Alzheimers Dis, 2010, 21(1):75-79. [17] WANG T, CHEN K, LI H, et al. The feasibility of utilizing plasma miRNA107 and BACE1 messenger RNA gene expression for clinical diagnosis of amnestic mild cognitive impairment[J]. J Clin Psychiatry, 2015, 76(2):135-141. [18] ZHU H C, WANG L M, WANG M, et al. MicroRNA-195 downregulates Alzheimer’s disease amyloid-beta production by targeting BACE1[J]. Brain Res Bull, 2012,88(6):596-601. [19] AI J, SUN L H, CHE H, et al. MicroRNA-195 protects against dementia induced by chronic brain hypoperfusion via its anti-amyloidogenic effect in rats[J]. J Neurosci, 2013,33(9):3989-4001. [20] WANG J, GU B J, MASTERS C L, et al. A systemic view of Alzheimer disease - insights from amyloid-beta metabolism beyond the brain[J]. Nat Rev Neurol, 2017,13(10):612-623. [21] YANG H, LI J, LI X, et al. Based on molecular structures: amyloid-beta generation, clearance, toxicity and therapeutic strategies[J]. Front Mol Neurosci, 2022, 15:927530. [22] HUANG N, WU J, QIU W, et al. MiR-15a and miR-16 induce autophagy and enhance chemosensitivity of Camptothecin[J]. Cancer Biol Ther, 2015,16(6):941-948. [23] LI G, CHEN T, ZHU Y, et al. MiR-103 alleviates autophagy and apoptosis by regulating SOX2 in LPS-injured PC12 cells and SCI rats[J]. Iran J Basic Med Sci, 2018, 21(3):292-300. [24] LI W, WANG S S, SHAN B Q, et al. MiR-103-3p targets Ndel1 to regulate neural stem cell proliferation and differentiation[J]. Neural RegenRes, 2022, 17(2):401-408. [25] SWEENEY M D, ZHAO Z, MONTAGNE A, et al. Blood-brain barrier: from physiology to disease and back[J]. Physiol Rev, 2019, 99(1):21-78. [26] LIU W, CAI H, LIN M, et al. MicroRNA-107 prevents amyloid-beta induced blood-brain barrier disruption and endothelial cell dysfunction by targeting Endophilin-1[J]. Exp Cell Res, 2016, 343(2):248-257. [27] LIN M, ZHU L, WANG J, et al. MiR-424-5p maybe regulate blood-brain barrier permeability in a model in vitro with Abeta incubated endothelial cells[J]. Biochem Biophys Res Commun, 2019, 517(3):525-531. [28] ZHU L, LIN M, MA J, et al. The role of LINC00094/miR-224-5p (miR-497-5p)/Endophilin-1 axis in Memantine mediated protective effects on blood-brain barrier in AD microenvironment[J]. J Cell Mol Med, 2019, 23(5):3280-3292. [29] WANG W X, HUANG Q, HU Y, et al. Patterns of micro RNA expression in normal and early Alzheimer’s disease human temporal cortex: white matter versus gray matter[J]. Acta Neuropathol, 2011, 121(2):193-205. [30] HOLPER S, WATSON R, YASSI N. Tau as a biomarker of neurodegeneration[J]. Int J Mol Sci, 2022, 23(13):7307. [31] PARSI S, SMITH P Y, GOUPIL C, et al. Preclinical evaluation of miR-15/107 family members as multifactorial drug targets for Alzheimer’s disease[J]. Mol Ther Nucleic Acids, 2015, 4(10):e256. [32] HEBERT S S, PAPADOPOULOU A S, SMITH P, et al. Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration[J]. Hum Mol Genet, 2010, 19(20):3959-3969. [33] MONCINI S, LUNGHI M, VALMADRE A, et al. The miR-15/107 family of microRNA genes regulates CDK5R1/p35 with implications for Alzheimer’s disease pathogenesis[J]. Mol Neurobiol, 2017, 54(6):4329-4342. [34] MONCINI S, SALVI A, ZUCCOTTI P, et al. The role of miR-103 and miR-107 in regulation of CDK5R1 expression and in cellular migration[J]. PLoS One, 2011,6(5):e20038. [35] MCKEEVER P M, SCHNEIDER R, TAGHDIRI F, et al. MicroRNA expression levels are altered in the cerebrospinal fluid of patients with young-onset Alzheimer’s disease[J]. Mol Neurobiol, 2018, 55(12):8826-8841. [36] YE Z, SUN B, MI X, et al. Gene co-expression network for analysis of plasma exosomal miRNAs in the elderly as markers of aging and cognitive decline[J]. PeerJ, 2020,8:e8318. [37] MINAMIDE L S, STRIEGL A M, BOYLE J A, et al. Neurodegenerative stimuli induce persistent ADF/cofilin-actin rods that disrupt distal neurite function[J]. Nat Cell Biol, 2000,2(9):628-636. [38] WHITEMAN I T, GERVASIO O L, CULLEN K M, et al. Activated actin-depolymerizing factor/cofilin sequesters phosphorylated microtubule-associated protein during the assembly of alzheimer-like neuritic cytoskeletal striations[J]. J Neurosci, 2009, 29(41):12994-13005. [39] YAO J, HENNESSEY T, FLYNT A, et al. MicroRNA-related cofilin abnormality in Alzheimer’s disease[J]. PLoS One, 2010, 5(12):e15546. [40] SUN L H, BAN T, LIU C D, et al. Activation of Cdk5/p25 and tau phosphorylation following chronic brain hypoperfusion in rats involves microRNA-195 down-regulation[J]. J Neurochem, 2015, 134(6):1139-1151. [41] CAO J, HUANG M, GUO L, et al. MicroRNA-195 rescues ApoE4-induced cognitive deficits and lysosomal defects in Alzheimer’s disease pathogenesis[J]. Mol Psychiatry, 2021, 26(9):4687-4701. [42] FORLONI G. Alzheimer’s disease: from basic science to precision medicine approach[J]. BMJ Neurol Open, 2020, 2(2):e79. [43] SINGH R K. Recent trends in the management of Alzheimer’s disease: current therapeutic options and drug repurposing approaches[J]. Curr Neuropharmacol, 2020, 18(9):868-882. [44] BURAK K, LAMOUREUX L, BOESE A, et al. MicroRNA-16 targets mRNA involved in neurite extension and branching in hippocampal neurons during presymptomatic prion disease[J]. Neurobiol Dis, 2018, 112:1-13. [45] SHU B, ZHANG X, DU G, et al. MicroRNA-107 prevents amyloid-beta-induced neurotoxicity and memory impairment in mice[J]. Int J Mol Med, 2018, 41(3):1665-1672. [46] JIAO Y, KONG L, YAO Y, et al. Osthole decreases beta amyloid levels through up-regulation of miR-107 in Alzheimer’s disease[J]. Neuropharmacology, 2016,108:332-344. [47] KE S, YANG Z, YANG F, et al. Long noncoding RNA NEAT1 aggravates Abeta-induced neuronal damage by targeting miR-107 in Alzheimer’s disease[J]. Yonsei Med J, 2019,60(7):640-650. |
[1] | 孙丽, 尹卫红, 经俊, 钱夏丽. 亚麻醉剂量艾司氯胺酮对老年脊柱手术病人术后早期认知功能障碍的影响[J]. 实用老年医学, 2024, 38(10): 1039-1043. |
[2] | 叶念思, 胡慧, 邓蓓, 刘雪婷, 周诗, 李雨灿, 王晓梦. 轻度认知障碍老年人口腔健康相关生活质量现状及影响因素分析[J]. 实用老年医学, 2024, 38(7): 674-678. |
[3] | 陈昕露, 周艺铭, 韩雪, 顾小萍. 睡眠障碍与老年术后认知功能障碍的双向关联研究进展[J]. 实用老年医学, 2024, 38(5): 433-437. |
[4] | 蔡文岚, 孙杰. 老年病人术后认知功能障碍的风险因素研究进展[J]. 实用老年医学, 2024, 38(5): 438-437. |
[5] | 赵倩文, 孙斌, 朱杨子, 顾小萍, 王立伟. 老年病人术后认知功能障碍诊断与干预策略的研究进展[J]. 实用老年医学, 2024, 38(5): 447-437. |
[6] | 郭金花, 申铁梅, 陈凌, 崔虹, 王小霞, 黄巧, 黄芳, 李芸, 杨满青. 广东省农村老年人认知功能现状及影响因素分析[J]. 实用老年医学, 2024, 38(5): 456-437. |
[7] | 隗倩, 蔡颖源, 王珊, 谈福云, 陆小伟. 甲状腺功能正常及亚临床甲状腺功能减退的老年人血清促甲状腺激素水平与认知障碍的相关性[J]. 实用老年医学, 2024, 38(5): 486-437. |
[8] | 张卉, 李霞. 痴呆前心理行为障碍预测阿尔茨海默病的研究进展[J]. 实用老年医学, 2024, 38(5): 512-437. |
[9] | 焦琳娜, 李宝仪, 王琴, 何建丽. 脑白质病变及大脑皮层厚度与老年轻型卒中后认知功能障碍的相关性研究[J]. 实用老年医学, 2024, 38(3): 287-290. |
[10] | 赵璨, 冯美江. 外泌体与阿尔茨海默病的研究进展[J]. 实用老年医学, 2023, 37(4): 335-338. |
[11] | 朱贺, 殷实. 认知障碍与抑郁症关系的研究进展[J]. 实用老年医学, 2023, 37(3): 234-237. |
[12] | 孙红梅, 杨蔚. 新型冠状病毒感染与阿尔茨海默症的最新研究进展[J]. 实用老年医学, 2023, 37(3): 300-303. |
[13] | 郭晓娟, 刘洁, 王瑾, 陆文惠, 高玲, 屈秋民. 西安地区阿尔茨海默病病人药物依从性调查及影响因素分析[J]. 实用老年医学, 2023, 37(1): 47-50. |
[14] | 刘亚东, 高浪丽, 吕娟, 葛宁, 岳冀蓉. 构建适用于我国老年住院病人的新型谵妄筛查量表[J]. 实用老年医学, 2024, 38(1): 28-33. |
[15] | 张嘉, 刘鑫伟, 廉洪宇, 刘可鑫, 李子涛. 老年病人血红蛋白浓度与髋关节置换术后谵妄的相关性[J]. 实用老年医学, 2024, 38(1): 64-67. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|