实用老年医学 ›› 2023, Vol. 37 ›› Issue (2): 200-203.doi: 10.3969/j.issn.1003-9198.2023.02.023
秦丽, 黄婷婷, 张丹妹, 曹清, 刘娟
收稿日期:
2022-03-28
出版日期:
2023-02-20
发布日期:
2023-02-27
通讯作者:
刘娟,Email:lioujane@njmu.edu.cn
基金资助:
Received:
2022-03-28
Online:
2023-02-20
Published:
2023-02-27
中图分类号:
秦丽, 黄婷婷, 张丹妹, 曹清, 刘娟. 大脑能量代谢对老年人认知衰弱影响的研究进展[J]. 实用老年医学, 2023, 37(2): 200-203.
[1] CLEGG A, YOUNG J, ILIFFE S, et al. Frailty in elderly people[J]. Lancet, 2013, 381(9868): 752-762. [2] KELAIDITI E, CESARI M, CANEVELLI M, et al. Cognitive frailty: rational and definition from an (I.A.N.A./I.A.G.G.) international consensus group[J]. J Nutr Health Aging, 2013, 17(9): 726-734. [3] 马丽娜, 陈彪. 认知衰弱:一个新的概念[J]. 中华老年医学杂志, 2018, 37(2):227-231. [4] RIVAN N F M, SINGH D K A, SHAHAR S, et al. Cognitive frailty is a robust predictor of falls, injuries, and disability among community-dwelling older adults[J]. BMC Geriatr, 2021,21(1):593. [5] FRIED L P, TANGEN C M, WALSTON J, et al. Frailty in older adults: evidence for a phenotype[J]. J Gerontol A Biol Sci Med Sci, 2001, 56(3): M146-M156. [6] MORRIS J C. The clinical dementia rating (CDR): current version and scoring rules[J]. Neurology, 1993, 43(11):2414. [7] FENG L, ZIN N M S, GAO Q, et al. Cognitive frailty and adverse health outcomes: findings from the Singapore Longitudinal Ageing Studies (SLAS)[J]. J Am Med Dir Assoc, 2017, 18(3): 252-258. [8] 刘玥婷, 范俊瑶, 赵慧敏, 等. 老年人认知衰弱现状及影响因素的研究进展[J]. 护理学杂志, 2019, 34(17):101-105. [9] CHEN C, PARK J, WU C, et al. Cognitive frailty in relation to adverse health outcomes independent of multimorbidity: results from the China health and retirement longitudinal study[J]. Aging :Albany NY, 2020, 12(22): 23129-23145. [10] GOYAL M S, VLASSENKO A G, BLAZEY T M, et al. Loss of brain aerobic glycolysis in normal human aging[J]. Cell Metab, 2017, 26(2): 353-360. [11] DIENEL G A. Brain glucose metabolism: integration of energetics with function[J]. Physiol Rev, 2019, 99(1): 949-1045. [12] CUNNANE S C, TRUSHINA E, MORLAND C, et al. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing[J]. Nat Rev Drug Discov, 2020, 19(9): 609-633. [13] VAN DER ZEE E A. Synapses, spines and kinases in mammalian learning and memory, and the impact of aging[J]. Neurosci Biobehav Rev, 2015, 50: 77-85. [14] MAGISTRETTI P J, ALLAMAN I. Lactate in the brain: from metabolic end-product to signalling molecule[J]. Nat Rev Neurosci, 2018, 19(4): 235-249. [15] ASHRAFI G, WU Z, FARRELL R J, et al. GLUT4 mobilization supports energetic demands of active synapses[J]. Neuron, 2017, 93(3): 606-615. [16] SUZUKI A, STERN S A, BOZDAGI O, et al. Astrocyte-neuron lactate transport is required for long-term memory formation[J]. Cell, 2011, 144(5): 810-823. [17] 林露, 刘礼斌. 低血糖对糖尿病患者认知功能障碍影响的研究新进展[J]. 中华内分泌代谢杂志, 2021, 37(5):485-488. [18] CAMANDOLA S, MATTSON M P. Brain metabolism in health, aging, and neurodegeneration[J]. EMBO J, 2017, 36(11): 1474-1492. [19] ZAMAN V, SHIELDS D C, SHAMS R, et al. Cellular and molecular pathophysiology in the progression of Parkinson’s disease[J]. Metab Brain Dis, 2021, 36(5): 815-827. [20] ZILBERTER Y, ZILBERTER M. The vicious circle of hypometabolism in neurodegenerative diseases: ways and mechanisms of metabolic correction[J]. J Neurosci Res, 2017, 95(11): 2217-2235. [21] AN Y, VARMA V R, VARMA S, et al. Evidence for brain glucose dysregulation in Alzheimer’s disease[J]. Alzheimers Dement, 2018, 14(3): 318-329. [22] BONVENTO G, BOLAÑOS J P. Astrocyte-neuron metabolic cooperation shapes brain activity[J]. Cell Metab, 2021, 33(8): 1546-1564. [23] GUNDERSEN V, STORM-MATHISEN J, BERGERSEN L H. Neuroglial transmission[J]. Physiol Rev, 2015, 95(3): 695-726. [24] MAYBLYUM D V, BECKER J A, JACOBS H I L, et al. Comparing PET and MRI biomarkers predicting cognitive decline in preclinical Alzheimer disease[J]. Neurology, 2021, 96(24):e2933-e2943. [25] GORDON B A, BLAZEY T M, SU Y, et al. Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer’s disease: a longitudinal study[J]. Lancet Neurol, 2018, 17(3): 241-250.. [26] BUTTERFIELD D A, HALLIWELL B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease[J]. Nat Rev Neurosci, 2019, 20(3): 148-160 [27] VAN DER FLIER W M, SKOOG I, SCHNEIDER J A, et al. Vascular cognitive impairment[J]. Nat Rev Dis Primers, 2018, 4: 18003. [28] POPA-WAGNER A, BUGA A M, POPESCU B, et al. Vascular cognitive impairment, dementia, aging and energy demand[J]. J Neural Transm :Vienna, 2015, 122 (Suppl 1): S47-S54. [29] GONZÁÍLEZ-RODRÍGUEZ P, ZAMPESE E, STOUT K A, et al. Disruption of mitochondrial complex I induces progressive parkinsonism[J]. Nature, 2021,599(7886):650-656. [30] MOREA V, BIDOLLARI E, COLOTTI G, et al. Glucose transportation in the brain and its impairment in Huntington disease: one more shade of the energetic metabolism failure?[J]. Amino Acids, 2017, 49(7): 1147-1157. [31] WILSON H, PAGANO G, POLITIS M. Dementia spectrum disorders: lessons learnt from decades with PET research[J]. J Neural Transm :Vienna, 2019, 126(3): 233-251. [32] BUTTERFIELD D A, HALLIWELL B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease[J]. Nat Rev Neurosci, 2019, 20(3): 148-160. [33] DE M Z, KHOURY N, BETLEY M J, et al. Exercise plasma boosts memory and dampens brain inflammation via clusterin[J]. Nature, 2021, 600(7889): 494-499. [34] GRANATA C, CARUANA N J, BOTELLA J, et al. High-intensity training induces non-stoichiometric changes in the mitochondrial proteome of human skeletal muscle without reorganisation of respiratory chain content[J]. Nat Commun, 2021, 12(1): 7056. [35] FORTIER M, CASTELLANO C A, ST-PIERRE V, et al. A ketogenic drink improves cognition in mild cognitive impairment: results of a 6-month RCT[J]. Alzheimers Dement, 2021, 17(3): 543-552. [36] ZHANG L, ZHANG S, MAEZAWA I, et al. Modulation of mitochondrial complex I activity averts cognitive decline in multiple animal models of familial Alzheimer’s Disease[J]. EBioMedicine, 2015, 2(4): 294-305. |
[1] | 袁勇贵, 汪天宇. 前言——关注老年慢性病病人心身健康问题刻不容缓[J]. 实用老年医学, 2024, 38(10): 973-973. |
[2] | 许芳, 宋博文, 李璐瑶. 基于中医心身整体观的老年慢性病与心理健康关系研究[J]. 实用老年医学, 2024, 38(10): 990-992. |
[3] | 寇夕, 刘永宏, 董玮, 王华, 王宝梅, 高玉芳. 住院老年病人衰弱综合征与胰岛素样生长因子-1的相关性研究[J]. 实用老年医学, 2024, 38(5): 474-437. |
[4] | 庄鑫, 宗智颖, 徐花, 郑娟, 吴金芳, 刘恺航, 赵静, 张丽霞. 前馈控制训练对老年人跌倒风险的影响[J]. 实用老年医学, 2024, 38(5): 478-437. |
[5] | 杨琳琳, 张土明, 蔡钰莹, 罗金花, 杨宇. 社会支持与老年衰弱的研究进展[J]. 实用老年医学, 2024, 38(5): 525-437. |
[6] | 李婕, 王潇, 俞静, 刘娟, 陈姝, 佟蔷薇. 不同静息能量消耗预测方程在老年衰弱病人中的准确性比较[J]. 实用老年医学, 2024, 38(3): 293-295. |
[7] | 田甜, 张飞, 李铭麟, 张璇, 王佳贺. 人工智能助力改善老年听力障碍的研究进展[J]. 实用老年医学, 2024, 38(2): 114-118. |
[8] | 夏晶颖, 张倩. 老年营养风险指数联合降钙素原清除率和中性粒细胞/淋巴细胞比值对老年脓毒症病人短期预后的预测价值[J]. 实用老年医学, 2023, 37(2): 134-137. |
[9] | 许孟楠, 冯建萍, 陶伏莹, 邹旗. 老年综合评估对老年癌症病人术后结局预测价值的研究进展[J]. 实用老年医学, 2023, 37(2): 195-199. |
[10] | 江杨洋, 侯利莎, 曹立. 老年病人入院前日常生活活动能力下降现状及相关因素探讨[J]. 实用老年医学, 2023, 37(1): 31-34. |
[11] | 杨新杰, 竺静雯, 俞彬, 孙安硕, 王晓蕾. 社区老年人的不确定性压力状况及影响因素研究[J]. 实用老年医学, 2023, 37(1): 35-38. |
[12] | 姚铸玲, 王志勇, 唐伟, 徐斐. 南京市老年人群异常体质量状况的流行病学特征[J]. 实用老年医学, 2023, 37(1): 39-42. |
[13] | 黄兆晶, 刘红, 何兴月, 蒙张敏, 谢冬梅. 基于老年综合评估的多学科营养管理模式在老年病房中的应用研究[J]. 实用老年医学, 2023, 37(1): 92-95. |
[14] | 李霜, 袁晓丽, 江智霞, 杨晓玲, 赵小玲, 梁鹤婷, 王朝平. 老年人自我报告视力和听力功能障碍及其交互作用与衰弱的相关性研究[J]. 实用老年医学, 2024, 38(4): 343-347. |
[15] | 苑莉莉, 王佳贺. 前言——人工智能在常见老年综合征中的应用[J]. 实用老年医学, 2024, 38(1): 1-2. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|