实用老年医学 ›› 2022, Vol. 36 ›› Issue (10): 978-982.doi: 10.3969/j.issn.1003-9198.2022.10.002
唐伟, 张子成
收稿日期:
2022-08-03
出版日期:
2022-10-20
发布日期:
2022-10-21
作者简介:
唐伟 教授
Received:
2022-08-03
Online:
2022-10-20
Published:
2022-10-21
中图分类号:
唐伟, 张子成. 老年糖尿病血糖监测技术新进展[J]. 实用老年医学, 2022, 36(10): 978-982.
[1] LI Y, TENG D, SHI X, et al. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: national cross sectional study[J]. BMJ, 2020, 369:m997. [2] WANG L, GAO P, ZHANG M, et al. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013[J]. JAMA, 2017, 317(24):2515-2523. [3] LAITEERAPONG N, HAM S A, GAO Y, et al. The legacy effect in type 2 diabetes: impact of early glycemic control on future complications (The Diabetes & Aging Study) [J]. Diabetes Care, 2019, 42(3):416-426. [4] American Diabetes Association. 7. Diabetes Technology: Standards of Medical Care in Diabetes-2021 [J]. Diabetes Care, 2021, 44(Suppl 1):S85-S99. [5] 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020 年版)[J]. 中华糖尿病杂志, 2021, 13(4): 317-411. [6] 中华医学会糖尿病学分会. 中国血糖监测临床应用指南(2021年版)[J]. 中华糖尿病杂志, 2021, 13(10):936-948. [7] VILLENA GONZALES W, MOBASHSHER A T, ABBOSH A. The progress of glucose monitoring-a review of invasive to minimally and non-invasive techniques, devices and sensors [J]. Sensors: Basel, 2019, 19(4):800. [8] KRINSLEY J, BOCHICCHIO K, CALENTINE C, et al. Glucose measurement of intensive care unit patient plasma samples using a fixed-wavelength mid-infrared spectroscopy system [J]. J Diabetes Sci Technol, 2012, 6(2):294-301. [9] BARASSI A, UMBRELLO M, GHILARDI F, et al. Evaluation of the performance of a new OptiScannerTM 5000 system for an intermittent glucose monitoring [J]. Clin Chim Acta, 2015, 438:252-254. [10] GABBAY R A, SIVARAJAH S. Optical coherence tomography-based continuous noninvasive glucose monitoring in patients with diabetes [J]. Diabetes Technol Ther, 2008, 10(3):188-193. [11] DEISS D, SZADKOWSKA A, GORDON D, et al. Clinical practice recommendations on the routine use of eversense, the first long-term implantable continuous glucose monitoring system [J]. Diabetes Technol Ther, 2019, 21(5):254-264. [12] ARONSON R, ABITBOL A, TWEDEN K S. First assessment of the performance of an implantable continuous glucose monitoring system through 180 days in a primarily adolescent population with type 1 diabetes [J]. Diabetes Obes Metab, 2019, 21(7):1689-1694. [13] BATTELINO T, DANNE T, BERGENSTAL R M, et al. Clinical targets for continuous glucose monitoring data interpretation: recommendations from the international consensus on time in range [J]. Diabetes Care, 2019, 42(8):1593-1603. [14] 中国老年2型糖尿病防治临床指南编写组, 中国老年医学学会老年内分泌代谢分会, 中国老年保健医学研究会老年内分泌与代谢分会, 等. 中国老年2型糖尿病防治临床指南(2022年版)[J]. 中华内科杂志, 2022, 61(1): 12-50. [15] BECK R W, BERGENSTAL R M, RIDDLESWORTH T D, et al. Validation of time in range as an outcome measure for diabetes clinical trials [J]. Diabetes Care, 2019, 42(3):400-405. [16] LU J, WANG C, SHEN Y, et al. Time in range in relation to all-cause and cardiovascular mortality in patients with type 2 diabetes: a prospective cohort study [J]. Diabetes Care, 2021, 44(2):549-555. [17] PRENTICE J C, MOHR D C, ZHANG L, et al. Increased hemoglobin A1c time in range reduces adverse health outcomes in older adults with diabetes [J]. Diabetes Care, 2021, 44(8):1750-1756. [18] JURYSTA C, BULUR N, OGUZHAN B, et al. Salivary glucose concentration and excretion in normal and diabetic subjects [J]. J Biomed Biotechnol, 2009, 2009:430426. [19] ABD-ELRAHEEM S E, EL SAEED A M, MANSOUR H H. Salivary changes in type 2 diabetic patients [J]. Diabetes Metab Syndr, 2017, 11 (Suppl 2): S637-S641. [20] GAO W, EMAMINEJAD S, NYEIN H Y Y, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis [J]. Nature, 2016, 529(7587):509-514. [21] WIOREK A, PARRILLA M, CUARTERO M, et al. Epidermal patch with glucose biosensor: pH and temperature correction toward more accurate sweat analysis during sport practice [J]. Anal Chem, 2020, 92(14):10153-10161. [22] CUI Y, DUAN W, JIN Y, et al. Ratiometric fluorescent nanohybrid for noninvasive and visual monitoring of sweat glucose [J]. ACS Sens, 2020, 5(7):2096-2105. [23] LIN P H, SHEU S C, CHEN C W, et al. Wearable hydrogel patch with noninvasive, electrochemical glucose sensor for natural sweat detection [J]. Talanta, 2022, 241:123187. [24] AIHARA M, KUBOTA N, MINAMI T, et al. Association between tear and blood glucose concentrations: random intercept model adjusted with confounders in tear samples negative for occult blood [J]. J Diabetes Investig, 2021, 12(2):266-276. [25] KOWNACKA A E, VEGELYTE D, JOOSSE M, et al. Clinical evidence for use of a noninvasive biosensor for tear glucose as an alternative to painful finger-prick for diabetes management utilizing a biopolymer coating [J]. Biomacromolecules, 2018,19(11):4504-4511. [26] American Diabetes Association Professional Practice Committee. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2022[J]. Diabetes Care, 2022, 45(Suppl 1):S17-S38. [27] BAO Y, MA X, LI H, et al. Glycated haemoglobin A1c for diagnosing diabetes in Chinese population: cross sectional epidemiological survey [J]. BMJ, 2010, 340:c2249. [28] Diabetes Control and Complications Trial Research Group, NATHAN D M, GENUTH S, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus [J]. N Engl J Med,1993,329(14):977-986. [29] UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33)[J]. Lancet, 1998,352(9131):837-853. [30] GALLAGHER E J, LE ROITH D, BLOOMGARDEN Z. Review of hemoglobin A(1c) in the management of diabetes [J]. J Diabetes, 2009, 1(1):9-17. [31] BELLIA C, ZANINOTTO M, COSMA C, et al. Definition of the upper reference limit of glycated albumin in blood donors from Italy [J]. Clin Chem Lab Med, 2017,56(1):120-125. [32] KOGA M, MURAI J, SAITO H, et al. Effects of thyroid hormone on serum glycated albumin levels: study on non-diabetic subjects [J]. Diabetes Res Clin Pract, 2009, 84(2):163-167. [33] KOGA M, KASAYAMA S, KANEHARA H, et al. CLD (chronic liver diseases)-HbA1c as a suitable indicator for estimation of mean plasma glucose in patients with chronic liver diseases [J]. Diabetes Res Clin Pract, 2008,81(2):258-262. [34] SELVIN E, WARREN B, HE X, et al. Establishment of community-based reference intervals for fructosamine, glycated albumin, and 1,5-anhydroglucitol [J]. Clin Chem, 2018,64(5):843-850. [35] YING L, HE X, MA X, et al. Serum 1,5-anhydroglucitol when used with fasting plasma glucose improves the efficiency of diabetes screening in a Chinese population [J]. Sci Rep, 2017,7(1):11968. [36] KIM W J, PARK C Y. 1,5-Anhydroglucitol in diabetes mellitus [J]. Endocrine, 2013, 43(1):33-40. [37] OKURA T, TERAMOTO K, KOSHITANI R, et al. A computer-based glucose management system reduces the incidence of forgotten glucose measurements: a retrospective observational study [J]. Diabetes Ther, 2018, 9(3):1143-1147. [38] TERAMOTO K, OKURA T, KONDO H. Evaluation of outcomes using a tablet-based system to support glycemic management workflow operations: a retrospective observational study [J]. J Med Syst, 2020, 44(9):167. [39] KYI M, WRAIGHT P R, ROWAN L M, et al. Glucose alert system improves health professional responses to adverse glycaemia and reduces the number of hyperglycaemic episodes in non-critical care inpatients [J]. Diabet Med, 2018, 35(6):816-823. [40] JOHNSTON L, WANG G, HU K, et al. Advances in biosensors for continuous glucose monitoring towards wearables[J]. Front Bioeng Biotechnol, 2021, 9:733810. [41] ZHANG J, XU J, LIM J, et al. Wearable glucose monitoring and implantable drug delivery systems for diabetes management [J]. Adv Healthc Mater, 2021, 10(17):e2100194. |
[1] | 张星星, 张海洋, 何小菁, 鲁翔. 不同肥胖指标与老年人糖尿病患病风险的调查研究[J]. 实用老年医学, 2024, 38(9): 940-943. |
[2] | 赵玉玲, 黄婧, 叶文春. 血清γ-氨基丁酸、胰岛素样生长因子-1对老年糖尿病前期病人心血管事件风险的交互作用分析[J]. 实用老年医学, 2024, 38(8): 816-820. |
[3] | 梁杉杉, 梁欢, 杨珊, 刘建凤. 老年T2DM病人肌少症发生与颈动脉粥样硬化的相关性研究[J]. 实用老年医学, 2024, 38(8): 826-830. |
[4] | 时雯, 朱平, 周洁, 颜婷, 黄玉杰, 严妍. 胰激肽原酶治疗老年2型糖尿病轻度认知功能障碍的疗效观察[J]. 实用老年医学, 2024, 38(6): 587-591. |
[5] | 郭淳, 易梦廷, 宗前兴, 周怡, 巫海娣, 莫永珍. 老年2型糖尿病病人6个月内低血糖风险预测模型的构建:一项纵向研究[J]. 实用老年医学, 2024, 38(6): 592-597. |
[6] | 包海童, 谈萍, 俞沛文, 刘娟, 丁国宪, 佟蔷薇, 王晓东. 基于老年综合评估的2型糖尿病病人衰弱影响因素分析[J]. 实用老年医学, 2022, 36(12): 1264-1268. |
[7] | 陈明珠, 许勤, 蔡英华. 老年糖尿病合并衰弱病人自我感受负担的现状及影响因素分析[J]. 实用老年医学, 2022, 36(12): 1269-1272. |
[8] | 祖丽胡玛尔·阿布都艾尼, 刘超. 老年糖尿病的流行病学特点[J]. 实用老年医学, 2022, 36(10): 973-977. |
[9] | 徐千越, 胡云. 注射类降糖药物在老年糖尿病病人中的使用新进展[J]. 实用老年医学, 2022, 36(10): 983-985. |
[10] | 叶德梅, 张俊, 殷汉, 李玲. 老年糖尿病口服降糖药物新进展[J]. 实用老年医学, 2022, 36(10): 986-990. |
[11] | 李盖, 王雷, 孙新娟, 王天元, 陈金安. 老年2型糖尿病并发症的治疗新进展[J]. 实用老年医学, 2022, 36(10): 991-995. |
[12] | 俞匀, 唐伟, 娄青林. 不同发病年龄新诊断2型糖尿病病人临床特点分析[J]. 实用老年医学, 2022, 36(10): 1015-1018. |
[13] | 姚铸玲, 王志勇, 熊亚晴, 徐斐. 南京市老年人群高血压合并糖尿病的流行特征[J]. 实用老年医学, 2022, 36(8): 796-800. |
[14] | 包宇航, 郑仁东. 糖代谢与睾酮关系的研究进展[J]. 实用老年医学, 2022, 36(8): 850-853. |
[15] | 仰孝群, 欧阳晓俊. 糖尿病与衰弱相关研究进展[J]. 实用老年医学, 2022, 36(7): 655-659. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|