实用老年医学 ›› 2021, Vol. 35 ›› Issue (12): 1304-1308.doi: 10.3969/j.issn.1003-9198.2021.12.025
陈绍敏, 王英
收稿日期:
2021-01-06
出版日期:
2021-12-20
发布日期:
2021-12-28
通讯作者:
王英,Email:ddw1972@163.com
基金资助:
Received:
2021-01-06
Online:
2021-12-20
Published:
2021-12-28
中图分类号:
陈绍敏, 王英. 轻度认知功能障碍老年人阿尔茨海默病风险预测的研究进展[J]. 实用老年医学, 2021, 35(12): 1304-1308.
[1] Alzheimer's Disease International. World Alzheimer Report 2015[R/OL].[2015-08-01/2021-01-03]. http://www.worldalzreport2015.org. [2] HUANG Y, WANG Y, WANG H, et al. Prevalence of mental disorders in China: a cross-sectional epidemiological study[J]. Lancet Psychiatry, 2019, 6(3): 211-224. [3] 中国痴呆与认知障碍诊治指南写作组,中国医师协会神经内科医师分会认知障碍疾病专业委员会. 中国阿尔茨海默病一级预防指南[J]. 中华医学杂志,2020,100(35):2721-2735. [4] TABUAS-PEREIRA M, BALDEIRAS I, DURO D, et al. Prognosis of early-onset vs. late-onset mild cognitive impairment: comparison of conversion rates and its predictors[J]. Geriatrics: Basel, 2016,1(2):11. [5] LU X, CHEN J, SHU H, et al. Predicting conversion to Alzheimer's disease among individual high-risk patients using the Characterizing AD Risk Events index model[J]. CNS Neurosci Ther, 2020,26(7):720-729. [6] SHIGEMIZU D, AKIYAMA S, HIGAKI S, et al. Prognosis prediction model for conversion from mild cognitive impairment to Alzheimer's disease created by integrative analysis of multi-omics data[J]. Alzheimers Res Ther,2020,12(1):145. [7] ARDEKANI B A, BERMUDEZ E, MUBEEN A M, et al. Prediction of incipient Alzheimer's Disease dementia in patients with mild cognitive impairment[J]. J Alzheimers Dis,2017,55(1):269-281. [8] PETERSEN R C. Clinical practice. Mild cognitive impairment[J]. N Engl J Med,2011,364(23):2227-2234. [9] CIESIELSKA N, SOKOŁOWSKI R, MAZUR E, et al. Is the Montreal Cognitive Assessment (MoCA) test better suited than the Mini-Mental State Examination (MMSE) in mild cognitive impairment (MCI) detection among people aged over 60? Meta-analysis[J]. Psychiatr Pol,2016,50(5):1039-1052. [10] 中国痴呆与认知障碍诊治指南写作组,中国医师协会神经内科医师分会认知障碍疾病专业委员会. 2018中国痴呆与认知障碍诊治指南(五):轻度认知障碍的诊断与治疗[J]. 中华医学杂志,2018,98(17):1294-1301. [11] TIERNEY M C, NAGLIE G, UPSHUR R, et al. Feasibility and validity of the self-administered computerized assessment of mild cognitive impairment with older primary care patients[J]. Alzheimer Dis Assoc Disord,2014,28(4):311-319. [12] TAKECHI H, YOSHINO H. Usefulness of CogEvo, a computerized cognitive assessment and training tool, for distinguishing patients with mild Alzheimer's disease and mild cognitive impairment from cognitively normal older people[J]. Geriatr Gerontol Int, 2021, 21(2):192-196. [13] NOGUCHI-SHINOHARA M, DOMOTO C, Yoshida T, et al. A new computerized assessment battery for cognition (C-ABC) todetect mild cognitive impairment and dementia around 5 min[J]. PLoS One,2020,15(12):e0243469. [14] BARNES D E, CENZER I S, YAFFE K, et al. A point-based tool to predict conversion from mild cognitive impairment to probable Alzheimer's disease[J]. Alzheimers Dement, 2014, 10(6):646-655. [15] INUI Y, ITO K, KATO T, et al. Longer-term investigation of the value of 18F-FDG PET and magnetic resonance imaging for predicting the conversion of mild cognitive impairment to Alzheimer's disease: a multicenter study[J]. J Alzheimers Dis, 2017,60(3):877-887. [16] SMAILAGIC N, LAFORTUNE L, KELLY S, et al. 18F-FDG PET for prediction of conversion to Alzheimer's disease dementia in people with mild cognitive impairment: an updated systematic review of test accuracy[J]. J Alzheimers Dis, 2018,64(4):1175-1194. [17] LI H, HABES M, WOLK D A, et al. A deep learning model for early prediction of Alzheimer's disease dementia based on hippocampal magnetic resonance imaging data[J]. Alzheimers Dement, 2019,15(8):1059-1070. [18] SPASOV S, PASSAMONTI L, DUGGENTO A,et al. A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease[J]. Neuroimage, 2019,189:276-287. [19] SUPPA P, HAMPEL H, KEPP T, et al. Performance of hippocampus volumetry with FSL-FIRST for prediction of Alzheimer's disease dementia in at risk subjects with amnestic mild cognitive impairment[J]. J Alzheimers Dis, 2016,51(3):867-873. [20] STEENLAND K, ZHAO L, JOHN S E, et al. A ‘Framingham-like’ Algorithm for predicting 4-year risk of progression to amnestic mild cognitive impairment or Alzheimer's disease using multidomain information[J]. J Alzheimers Dis, 2018,63(4):1383-1393. [21] 杨文璐,刘凤侠,张小慢. 轻度认知障碍转化阿尔茨海默病影像预测研究[J]. 安徽大学学报(自然科学版),2014,38(2):90-95. [22] QIN Y, TIAN Y, HAN H, et al. Risk classification for conversion from mild cognitive impairment to Alzheimer's disease in primary care[J]. Psychiatry Res, 2019,278:19-26. [23] ZHOU H, JIANG J, LU J, et al. Dual-model radiomic biomarkers predict development of mild cognitive impairment progression to Alzheimer's disease[J]. Front Neurosci, 2019,12:1045. [24] YANG Z, LIU Z. The risk prediction of Alzheimer's disease based on the deep learning model of brain 18F-FDG positron emission tomography[J]. Saudi J Biol Sci, 2020,27(2):659-665. [25] 姚丽丽,范炤. 基于MRI 和机器学习对阿尔茨海默病的分类预测[J]. 中国医学影响学杂志,2021,29(2):122-125,135. [26] PALMQVIST S, JANELIDZE S, QUIROZ Y T, et al. Discriminative accuracy of plasma phospho-tau217 for Alzheimer disease vs other neurodegenerative disorders[J]. JAMA,2020, 324(8): 772-781. [27] MIELKE M M, HAGEN C E, XU J, et al. Plasma phospho-tau181 increases with Alzheimer's disease clinical severity and is associated with tau- and amyloid-positron emission tomography[J]. Alzheimers Dement, 2018,14(8):989-997. [28] LI J Q, TAN L, WANG H F, et al. Risk factors for predicting progression from mild cognitive impairment to Alzheimer's disease: a systematic review and meta-analysis of cohort studies[J]. J Neurol Neurosurg Psychiatry, 2016,87(5):476-484. |
[1] | 孙丽, 尹卫红, 经俊, 钱夏丽. 亚麻醉剂量艾司氯胺酮对老年脊柱手术病人术后早期认知功能障碍的影响[J]. 实用老年医学, 2024, 38(10): 1039-1043. |
[2] | 董丽华, 李加梅, 郑加平, 雷小晶. 血液生物标志物在阿尔茨海默病早期诊断中的研究进展[J]. 实用老年医学, 2023, 37(12): 1249-1254. |
[3] | 张伟, 王蓉. 衰老作为神经退行性疾病危险因素的科学现状分析[J]. 实用老年医学, 2023, 37(10): 984-988. |
[4] | 时建铨, 郑慧芬, 徐畅, 王变荣. 认知障碍简明评价量表与Addenbrooke认知评估量表Ⅲ诊断阿尔茨海默病的准确性比较[J]. 实用老年医学, 2023, 37(10): 1041-1043. |
[5] | 阎子花, 杜静, 宋竹梅, 张兴梅, 张楠. 痴呆病人病感失认测评工具的研究进展[J]. 实用老年医学, 2023, 37(10): 1059-1063. |
[6] | 王琳琳, 杨诗怡, 徐俊. 人工智能在阿尔茨海默病中的研究进展[J]. 实用老年医学, 2023, 37(9): 869-872. |
[7] | 王敏, 郭文军, 汤忠泉, 赵晓敏, 欧婷, 李云涛. 听力障碍与阿尔茨海默病相关性的Meta分析[J]. 实用老年医学, 2023, 37(9): 915-919. |
[8] | 段景宜, 刘静, 查玉航, 杨巧露, 何海洋, 马亚男, 高海英. 阿尔茨海默病医防融合模式的探索[J]. 实用老年医学, 2023, 37(8): 757-760. |
[9] | 张绍敏, 吴锦晖. COVID-19与阿尔茨海默病的最新研究进展[J]. 实用老年医学, 2023, 37(5): 521-523. |
[10] | 赵璨, 冯美江. 外泌体与阿尔茨海默病的研究进展[J]. 实用老年医学, 2023, 37(4): 335-338. |
[11] | 朱贺, 殷实. 认知障碍与抑郁症关系的研究进展[J]. 实用老年医学, 2023, 37(3): 234-237. |
[12] | 郭晓娟, 刘洁, 王瑾, 陆文惠, 高玲, 屈秋民. 西安地区阿尔茨海默病病人药物依从性调查及影响因素分析[J]. 实用老年医学, 2023, 37(1): 47-50. |
[13] | 陈心怡, 孙杨, 徐德恩. 阿尔茨海默病外周血液生物标志物的研究进展[J]. 实用老年医学, 2021, 35(10): 1076-1079. |
[14] | 王桢, 冯美江. 阻塞性睡眠呼吸暂停低通气综合征和阿尔茨海默病相关性研究进展[J]. 实用老年医学, 2021, 35(8): 795-797. |
[15] | 高弈宁, 张少伟, 李霞. 正念练习应用于老年人认知功能干预的研究进展[J]. 实用老年医学, 2021, 35(8): 866-870. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|