[1] SHETH S A, ANOSSIAN N, AO Q, et al. Collateral flow as causative of good outcomes in endovascular stroke therapy[J]. J Neurointerv Surg, 2016, 8(1):2-7. [2] 王有科. 脑源性神经营养因子和血管内皮生长因子及基质金属蛋白酶-9与脑梗死关系研究进展[J]. 中华实用诊断与治疗杂志, 2017, 31(1):95-97. [3] 周经霞, 陈琳, 陈擘璨, 等. 血管内皮生长因子通过PI3K-Akt和MAPK-ERK通路促进脑梗死大鼠血管新生机制[J]. 中国老年学杂志, 2019, 39(15):3749-3752. [4] XUE L, CHEN H, ZHANG T. Changes in serum vascular endothelial growth factor and endostatin concentrations associated with circulating endothelial progenitor cells after acute ischemic stroke [J]. Metab Brain Dis, 2017, 32(2):641-648. [5] DRAY C, SAKAR Y, VINEL C, et al. The intestinal glucose-apelin cycle controls carbohydrate absorption in mice[J]. Gastroenterology, 2013, 144(4):771-780. [6] CHEN D, LEE J, GU X, et al. Intranasal delivery of Apelin-13 is Neuroprotective and promotes angiogenesis after ischemic stroke in mice[J]. ASN Neuro, 2015, 7(5):1759091415605114. [7] JIANG W, HU W, YE L, et al. Contribution of Apelin-17 to collateral circulation following cerebral ischemic stroke[J]. Transl Stroke Res, 2019, 10(3):298-307. [8] CHANG C H, YEN M C, LIAO S H, et al. Dual role of miR-21-mediated signaling in HUVECs and rat surgical flap under normoxia and hypoxia condition[J]. Int J Mol Sci, 2017, 18(9):1917. [9] 彭彬, 吴大玉, 孙家兰, 等. 急性脑梗死早期血中miRNAs水平与脑侧支循环建立的关系[J]. 中风与神经疾病杂志, 2016, 33(2):100-103. [10]王书婉, 李月春. 脑侧枝循环与血清 miRNAs(MIR-126)的相关性[J]. 中外医疗, 2018, 37(8):189-191. [11]CHEN Q, JIN M, YANG F, et al. Matrix metalloproteinases: inflammatory regulators of cell behaviors in vascular formation and remodeling[J]. Mediators Inflamm, 2013, 2013:928315. [12]HAAS T L, DOYLE J L, DISTASI M R, et al. Involvement of MMPs in the outward remodeling of collateral mesenteric arteries[J]. Am J Physiol Heart Circ Physiol, 2007, 293(4):H2429-H2437. [13]叶祖森, 程建华, 叶强, 等. MMP-9血清水平及启动子C-1562T基因与缺血性脑卒中侧支循环的关系[J]. 心脑血管病防治, 2018, 18(3):196-204. [14]GREENBERG D A. Angiogenesis and stroke[J]. Drug News Perspect, 1998, 11(5):265-270. [15]傅阳俊, 方丽萍. 血管生成素1与急性缺血性卒中患者侧支循环的关系[J]. 中国脑血管病杂志, 2018, 15(8): 408-413. [16]DALMAY F, MAZOUZ H, ALLARD J, et al. Non-AT(1)-receptor-mediated protective effect of angiotensin against acute ischaemic stroke in the gerbil[J]. J Renin Angiotensin Aldosterone Syst, 2001, 2(2):103-106. [17]BERTOLINO P, DECKERS M, LEBRIN F, et al. Transforming growth factor-beta signal transduction in angiogenesis and vascular disorders[J]. Chest, 2005, 128 (6 Suppl): 585S-590S. [18]HOJO M, HOSHIMARU M, MIYAMOTO S, et al. Role of transforming growth factor-beta1 in the pathogenesis of moyamoya disease[J]. J Neurosurg, 1998, 89(4):623-629. [19]王利军, 王建平, 李楠, 等. 血清TGF-β1水平与急性脑梗死侧支循环及预后相关性分析[J]. 中国实用神经疾病杂志, 2017, 20(17):1-3. [20]LI L, WANG M, MEI Z, et al. lncRNAs HIF1A-AS2 facilitates the up-regulation of HIF-1α by sponging to miR-153-3p, whereby promoting angiogenesis in HUVECs in hypoxia[J]. Biomed Pharmacother, 2017, 96:165-172. [21]李建军, 杨士芝, 吴茂礼, 等. 67例急性脑梗死患者血清HIF-1α及VEGF水平变化[J]. 山东医药, 2015, (31):107-108. [22]HUANG X, WAN M, YANG Q, et al. The stromal cell-derived factor-1 α (SDF-1α)/cysteine-X-cysteine chemokine receptor 4 (CXCR4) axis: a possible prognostic indicator of acute ischemic stroke[J]. J Int Med Res, 2019, 47(5):1897-1907. [23]SCHOBER A, ZERNECKE A. Chemokines in vascular remodeling [J]. Thromb Haemost, 2007, 97(5):730-737. [24]BIANCHI M E, CRIOOA M P, MANFREDI A A, et al. High-mobility group box 1 protein orchestrates responses to tissue damage via inflammation, innate and adaptive immunity, and tissue repair[J]. Immunol Rev, 2017, 280(1):74-82. [25]SHIMAMURA M, SATO N, OSHIMA K, et al. Novel therapeutic strategy to treat brain ischemia: overexpression of hepatocyte growth factor gene reduced ischemic injury without cerebral edema in rat model[J]. Circulation, 2004, 109(3):424-431. [26]BUSCHMANN E E, LEE E J, JACOBI D, et al. Induction of extracranial arteriogenesis by an arteriovenous fistula in a pig model[J]. Atherosclerosis, 2018, 272:87-93. |