Practical Geriatrics ›› 2021, Vol. 35 ›› Issue (12): 1304-1308.doi: 10.3969/j.issn.1003-9198.2021.12.025
Previous Articles Next Articles
Received:
2021-01-06
Online:
2021-12-20
Published:
2021-12-28
CLC Number:
[1] Alzheimer's Disease International. World Alzheimer Report 2015[R/OL].[2015-08-01/2021-01-03]. http://www.worldalzreport2015.org. [2] HUANG Y, WANG Y, WANG H, et al. Prevalence of mental disorders in China: a cross-sectional epidemiological study[J]. Lancet Psychiatry, 2019, 6(3): 211-224. [3] 中国痴呆与认知障碍诊治指南写作组,中国医师协会神经内科医师分会认知障碍疾病专业委员会. 中国阿尔茨海默病一级预防指南[J]. 中华医学杂志,2020,100(35):2721-2735. [4] TABUAS-PEREIRA M, BALDEIRAS I, DURO D, et al. Prognosis of early-onset vs. late-onset mild cognitive impairment: comparison of conversion rates and its predictors[J]. Geriatrics: Basel, 2016,1(2):11. [5] LU X, CHEN J, SHU H, et al. Predicting conversion to Alzheimer's disease among individual high-risk patients using the Characterizing AD Risk Events index model[J]. CNS Neurosci Ther, 2020,26(7):720-729. [6] SHIGEMIZU D, AKIYAMA S, HIGAKI S, et al. Prognosis prediction model for conversion from mild cognitive impairment to Alzheimer's disease created by integrative analysis of multi-omics data[J]. Alzheimers Res Ther,2020,12(1):145. [7] ARDEKANI B A, BERMUDEZ E, MUBEEN A M, et al. Prediction of incipient Alzheimer's Disease dementia in patients with mild cognitive impairment[J]. J Alzheimers Dis,2017,55(1):269-281. [8] PETERSEN R C. Clinical practice. Mild cognitive impairment[J]. N Engl J Med,2011,364(23):2227-2234. [9] CIESIELSKA N, SOKOŁOWSKI R, MAZUR E, et al. Is the Montreal Cognitive Assessment (MoCA) test better suited than the Mini-Mental State Examination (MMSE) in mild cognitive impairment (MCI) detection among people aged over 60? Meta-analysis[J]. Psychiatr Pol,2016,50(5):1039-1052. [10] 中国痴呆与认知障碍诊治指南写作组,中国医师协会神经内科医师分会认知障碍疾病专业委员会. 2018中国痴呆与认知障碍诊治指南(五):轻度认知障碍的诊断与治疗[J]. 中华医学杂志,2018,98(17):1294-1301. [11] TIERNEY M C, NAGLIE G, UPSHUR R, et al. Feasibility and validity of the self-administered computerized assessment of mild cognitive impairment with older primary care patients[J]. Alzheimer Dis Assoc Disord,2014,28(4):311-319. [12] TAKECHI H, YOSHINO H. Usefulness of CogEvo, a computerized cognitive assessment and training tool, for distinguishing patients with mild Alzheimer's disease and mild cognitive impairment from cognitively normal older people[J]. Geriatr Gerontol Int, 2021, 21(2):192-196. [13] NOGUCHI-SHINOHARA M, DOMOTO C, Yoshida T, et al. A new computerized assessment battery for cognition (C-ABC) todetect mild cognitive impairment and dementia around 5 min[J]. PLoS One,2020,15(12):e0243469. [14] BARNES D E, CENZER I S, YAFFE K, et al. A point-based tool to predict conversion from mild cognitive impairment to probable Alzheimer's disease[J]. Alzheimers Dement, 2014, 10(6):646-655. [15] INUI Y, ITO K, KATO T, et al. Longer-term investigation of the value of 18F-FDG PET and magnetic resonance imaging for predicting the conversion of mild cognitive impairment to Alzheimer's disease: a multicenter study[J]. J Alzheimers Dis, 2017,60(3):877-887. [16] SMAILAGIC N, LAFORTUNE L, KELLY S, et al. 18F-FDG PET for prediction of conversion to Alzheimer's disease dementia in people with mild cognitive impairment: an updated systematic review of test accuracy[J]. J Alzheimers Dis, 2018,64(4):1175-1194. [17] LI H, HABES M, WOLK D A, et al. A deep learning model for early prediction of Alzheimer's disease dementia based on hippocampal magnetic resonance imaging data[J]. Alzheimers Dement, 2019,15(8):1059-1070. [18] SPASOV S, PASSAMONTI L, DUGGENTO A,et al. A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease[J]. Neuroimage, 2019,189:276-287. [19] SUPPA P, HAMPEL H, KEPP T, et al. Performance of hippocampus volumetry with FSL-FIRST for prediction of Alzheimer's disease dementia in at risk subjects with amnestic mild cognitive impairment[J]. J Alzheimers Dis, 2016,51(3):867-873. [20] STEENLAND K, ZHAO L, JOHN S E, et al. A ‘Framingham-like’ Algorithm for predicting 4-year risk of progression to amnestic mild cognitive impairment or Alzheimer's disease using multidomain information[J]. J Alzheimers Dis, 2018,63(4):1383-1393. [21] 杨文璐,刘凤侠,张小慢. 轻度认知障碍转化阿尔茨海默病影像预测研究[J]. 安徽大学学报(自然科学版),2014,38(2):90-95. [22] QIN Y, TIAN Y, HAN H, et al. Risk classification for conversion from mild cognitive impairment to Alzheimer's disease in primary care[J]. Psychiatry Res, 2019,278:19-26. [23] ZHOU H, JIANG J, LU J, et al. Dual-model radiomic biomarkers predict development of mild cognitive impairment progression to Alzheimer's disease[J]. Front Neurosci, 2019,12:1045. [24] YANG Z, LIU Z. The risk prediction of Alzheimer's disease based on the deep learning model of brain 18F-FDG positron emission tomography[J]. Saudi J Biol Sci, 2020,27(2):659-665. [25] 姚丽丽,范炤. 基于MRI 和机器学习对阿尔茨海默病的分类预测[J]. 中国医学影响学杂志,2021,29(2):122-125,135. [26] PALMQVIST S, JANELIDZE S, QUIROZ Y T, et al. Discriminative accuracy of plasma phospho-tau217 for Alzheimer disease vs other neurodegenerative disorders[J]. JAMA,2020, 324(8): 772-781. [27] MIELKE M M, HAGEN C E, XU J, et al. Plasma phospho-tau181 increases with Alzheimer's disease clinical severity and is associated with tau- and amyloid-positron emission tomography[J]. Alzheimers Dement, 2018,14(8):989-997. [28] LI J Q, TAN L, WANG H F, et al. Risk factors for predicting progression from mild cognitive impairment to Alzheimer's disease: a systematic review and meta-analysis of cohort studies[J]. J Neurol Neurosurg Psychiatry, 2016,87(5):476-484. |
[1] | SUN Li, YIN Weihong, JING Jun, QIAN Xiali. Effects of intraoperative subanesthetic dose of esketamine on early postoperative cognitive dysfunction in elderly patients undergoing spinal surgery [J]. Practical Geriatrics, 2024, 38(10): 1039-1043. |
[2] | . [J]. Practical Geriatrics, 2023, 37(12): 1249-1254. |
[3] | . [J]. Practical Geriatrics, 2023, 37(10): 984-988. |
[4] | . [J]. Practical Geriatrics, 2023, 37(10): 1041-1043. |
[5] | . [J]. Practical Geriatrics, 2023, 37(10): 1059-1063. |
[6] | . [J]. Practical Geriatrics, 2023, 37(9): 869-872. |
[7] | WANG Min, GUO Wen-jun, TANG Zhong-quan, ZHAO Xiao-min, OU Ting, LI Yun-tao. Association between hearing impairment and Alzheimer's disease: a Meta-analysis [J]. Practical Geriatrics, 2023, 37(9): 915-919. |
[8] | . [J]. Practical Geriatrics, 2023, 37(8): 757-760. |
[9] | . [J]. Practical Geriatrics, 2023, 37(5): 521-523. |
[10] | . [J]. Practical Geriatrics, 2023, 37(4): 335-338. |
[11] | . [J]. Practical Geriatrics, 2023, 37(3): 234-237. |
[12] | GUO Xiao-juan, LIU Jie, WANG Jin, LU Wen-hui, GAO Ling, QU Qiu-min. Investigation and analysis of influencing factors of the medication adherence in patients with Alzheimer’s disease in Xi’an [J]. Practical Geriatrics, 2023, 37(1): 47-50. |
[13] | . [J]. Practical Geriatrics, 2021, 35(10): 1076-1079. |
[14] | . [J]. Practical Geriatrics, 2021, 35(8): 795-797. |
[15] | . [J]. Practical Geriatrics, 2021, 35(8): 866-870. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|