Practical Geriatrics ›› 2024, Vol. 38 ›› Issue (12): 1297-1302.doi: 10.3969/j.issn.1003-9198.2024.12.024
Previous Articles Next Articles
Received:2024-02-03
Online:2024-12-20
Published:2024-12-19
CLC Number:
| [1] United Nations. World Population Prospects: The 2017 Revision[EB/OL] (2017-07-21)[2024-02-03].Https://www.un.org/en/desa/World-Population-Prospects-2017-Revision. [2] MUGIE S M, BENNINGA M A, DI LORENZO C. Epidemiology of constipation in children and adults: a systematic review[J]. Best Pract Res Clin Gastroenterol, 2011, 25(1):3-18. [3] ANDY U U, VAUGHAN C P, BURGIO K L, et al. Shared risk factors for constipation, fecal incontinence, and combined symptoms in older U.S. adults[J]. J Am Geriatr Soc, 2016, 64(11):e183-e188. [4] CHU H, ZHONG L, LI H, et al. Epidemiology characteristics of constipation for general population, pediatric population, and elderly population in China[J]. Gastroenterol Res Pract, 2014, 2014: 532734. [5] 于阿莉,刘响,安莹莹,等.肠道菌群失调与慢性便秘的研究进展[J]. 国际消化病杂志,2017,37(2):83-86. [6] ERHARDT R, HARNETT J E, STEELS E, et al. Functional constipation and the effect of prebiotics on the gut microbiota: a review[J]. Br J Nutr, 2023, 130(6):1015-1023. [7] WANG Z, KLIPFELL E, BENNETT B J, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease[J]. Nature, 2011, 472 (7341): 57-63. [8] CHANG J Y, LOCKE G R 3rd, MCNALLY M A, et al. Impact of functional gastrointestinal disorders on survival in the community[J]. Am J Gastroenterol, 2010, 105(4):822-832. [9] 中华医学会老年医学分会,中华老年医学杂志编辑委员会. 老年人慢性便秘的评估与处理专家共识[J]. 中华老年医学杂志,2017,36(4):371-381. [10] LI H, WANG K, HAO M, et al. The role of intestinal microecology in inflammatory bowel disease and colorectal cancer: a review[J]. Medicine: Baltimore, 2023,102(51):e36590. [11] SCHNABL B, BRENNER D A.Interactions between the intestinal microbiome and liver diseases[J].Gastroenterology, 2014,146(6):1513-1524. [12] JIN M, QIAN Z, YIN J, et al The role of intestinal microbiota in cardiovascular disease[J]. J Cell Mol Med, 2019, 23(4):2343-2350. [13] LLOYD-PRICE J, ARZE C, ANANTHAKRISHNAN A N, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases[J]. Nature, 2019, 569(7758): 655-662. [14] GROEN R N, DE CLERCQ N C, NIEUWDORP M, et al. Gut microbiota, metabolism and psychopathology: a critical review and novel perspectives[J]. Crit Rev Clin Lab Sci, 2018, 55(4):283-293. [15] OHKUSA T, KOIDO S, NISHIKAWA Y, et al. Gut microbiota and chronic constipation: a review and update[J]. Front Med: Lausanne,2019,6:19. [16] DIMIDI E, MARK SCOTT S, WHELAN K. Probiotics and constipation: mechanisms of action, evidence for effectiveness and utilisation by patients and healthcare professionals[J]. Proc Nutr Soc, 2020, 79(1):147-157. [17] BERCIK P, COLLINS S M, VERDU E F. Microbes and the gut-brain axis[J]. Neurogastroenterol Motil, 2012, 24(5):405-413. [18] DINAN T G, CRYAN J F. Gut-brain axis in 2016: brain-gut-microbiota axis-mood, metabolism and behaviour[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(2):69-70. [19] 陈启仪,姜军.功能型便秘与脑-肠-菌群轴的关系[J].中华胃肠外科杂志,2017,20(12):1345-1347. [20] BARBARA G, STANGHELLINI V, BRANDI G, et al. Interactions between commensal bacteria and gut sensorimotor function in health and disease[J]. Am J Gastroenterol, 2005, 100(11): 2560-2568. [21] ZHANG S, WANG R, LI D, et al. Role of gut microbiota in functional constipation[J]. Gastroenterol Rep: Oxf, 2021, 9(5):392-401. [22] CANCELLO R, TURRONI S, RAMPELLI S, et al. Effect of short-term dietary intervention and probiotic mix supplementation on the gut microbiota of elderly obese women[J]. Nutrients, 2019, 11(12):3011. [23] LIU X, XIE Z, SUN M, et al. Plasma trimethylamine N-oxide is associated with vulnerable plaque characteristics in CAD patients as assessed by optical coherence tomography[J]. Int J Cardiol, 2018, 265:18-23. [24] HIIPPALA K, JOUHTEN H, RONKAINEN A, et al. The potential of gut commensals in reinforcing intestinal barrier function and alleviating inflammation[J]. Nutrients, 2018, 10(8):988. [25] CHATTERJEE S, PARK S, LOW K, et al. The degree of breath methane production in IBS correlates with the severity of constipation[J]. Am J Gastroenterol, 2007, 102 (4):837-841. [26] GUO M, YAO J, YANG F, et al. The composition of intestinal microbiota and its association with functional constipation of the elderly patients[J]. Future Microbiol, 2020, 15:163-175. [27] 李菁,邹晓平,王钟晗,等.老年慢性便秘患者肠道菌群结构特点的研究[J].胃肠病学,2021,26(5):274-278. [28] 张旭,潘仁智,张晓玲,等.南京非便秘与便秘老人肠道菌群生态分布调查[J].南京中医药大学学报,2004,20(5):287-288. [29] BIAGI E, NYLUND L, CANDELA M, et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians[J]. PLoS One, 2010, 5(5): e10667. [30] CLAESSON M J, CUSACK S, O′SULLIVAN O, et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly[J]. Proc Natl Acad Sci U S A, 2011, 108 (Suppl 1): 4586-4591. [31] HAZEN S L, BROWN J M. Eggs as a dietary source for gut microbial production of trimethylamine-N-oxide[J]. Am J Clin Nutr, 2014, 100(3): 741-743. [32] GRUPPEN E G, GARCIA E, CONNELLY M A, et al. TMAO is associated with mortality: impact of modestly impaired renal function[J]. Sci Rep, 2017, 7(1): 13781. [33] AL-WAIZ M, MITCHELL S C, IDLE J R, et al. The metabolism of 14C-labelled trimethylamine and its N-oxide in man[J]. Xenobiotica, 1987, 17(5): 551-558. [34] HEIANZA Y, MA W, DIDONATO J A, et al. Long-term changes in gut microbial metabolite trimethylamine N-oxide and coronary heart disease risk[J]. J Am Coll Cardiol, 2020, 75(7): 763-772. [35] SHAN Z, SUN T, HUANG H, et al. Association between microbiota-dependent metabolite trimethylamine-N-oxide and type 2 diabetes[J]. Am J Clin Nutr, 2017, 106(3):888-894. [36] ZHANG W Q, WANG Y J, ZHANG A, et al. TMA/TMAO in hypertension: novel horizons and potential therapies[J]. J Cardiovasc Transl Res, 2021, 14(6): 1117-1124. [37] BARREA L, ANNUNZIATA G, MUSCOGIURI G, et al. Trimethylamine-N-oxide (TMAO) as novel potential biomarker of early predictors of metabolic syndrome[J]. Nutrients, 2018, 10(12):1971. [38] JANEIRO M H, RAMÍREZ M J, MILAGRO F I, et al.Implication of trimethy lamine N-oxide (TMAO) in disease: potential biomarker or new therapeutic target[J]. Nutrients, 2018, 10(10): 1398. [39] WANG Z, ROBERTS A B, BUFFA J A, et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis[J].Cell, 2015,163(7):1585-1595. [40] KOETH R A, WANG Z, LEVISON B S, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis[J]. Nat Med, 2013, 19(5): 576-585. [41] WANG Q J, SHEN Y E, WANG X, et al. Concomitant memantine and Lactobacillus plantarum treatment attenuates cognitive impairments in APP/PS1 mice[J]. Aging: Albany NY, 2020, 12(1): 628-649. [42] FU B C,HULLAR M A J, RANDOLPH T W, et al. Associations of plasma trimethylamine N-oxide, choline, carnitine, and betaine with inflammatory and cardiometabolic risk biomarkers and the fecal microbiome in the Multiethnic Cohort Adiposity Phenotype Study[J]. Am J Clin Nutr, 2020, 111(6): 1226-1234. [43] YOO W, ZIEBA J K, FOEGEDING N J, et al. High-fat diet-induced colonocyte dysfunction escalates microbiota-derived trimethylamine N-oxide[J]. Science, 2021, 373(6556): 813-818. [44] KOETH R A, WANG Z, LEVISON B S, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis[J]. Nat Med, 2013, 19(5):576-585. [45] CHEN K, ZHENG X, FENG M, et al. Gut microbiota-dependent metabolite trimethylamine N-oxide contributes to cardiac dysfunction in western diet-induced obese mice[J]. Front Physiol, 2017, 8: 139. [46] ZHEN J, ZHOU Z, HE M, et al. The gut microbial metabolite trimethylamine N-oxide and cardiovascular diseases[J]. Front Endocrinol: Lausanne, 2023, 14: 1085041. [47] ZHU W, GREGORY J C, ORG E, et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk[J]. Cell, 2016, 165(1): 111-124. [48] DEAN Y E, ROUZAN S S, LOAYZA PINTADO J J, et al. Serum trimethylamine N-oxide levels among coronary artery disease and acute coronary syndrome patients: a systematic review and meta-analysis[J]. Ann Med Surg: Lond, 2023, 85(12): 6123-6133. [49] MENTE A, CHALCRAFT K, AK H, et al.The relationship between trimethy lamine-N-oxide and prevalent cardiovascular disease in a multiethnic population living in Canada[J]. Can J Cardiol, 2015, 31(9):1189-1194. [50] GUO F, ZHOU J, LI Z, et al. The association between trimethylamine N-oxide and its predecessors choline, L-carnitine, and betaine with coronary artery disease and artery stenosis[J]. Cardiol Res Pract, 2020, 2020: 5854919. [51] SHENG Z, TAN Y, LIU C, et al. Relation of circulating trimethylamine N-oxide with coronary atherosclerotic burden in patients with ST-segment elevation myocardial infarction[J]. Am J Cardiol, 2019, 123(6):894-898. [52] MATSUZAWA Y, NAKAHASHI H, KONISHI M,et al. Microbiota-derived trimethylamine N-oxide predicts cardiovascular risk after STEMI[J]. Sci Rep, 2019, 9(1):11647. [53] QI J, YOU T, LI J, et al. Circulating trimethylamine N-oxide and the risk of cardiovascular diseases: a systematic review and meta-analysis of 11 prospective cohort studies[J]. J Cell Mol Med, 2018, 22(1):185-194. [54] LI N, ZHOU J, WANG Y, et al. Association between trimethylamine N-oxide and prognosis of patients with acute myocardial infarction and heart failure[J]. ESC Heart Fail, 2022, 9(6):3846-3857. [55] DONG Z, ZHENG S, SHEN Z, et al. Trimethylamine N-oxide is associated with heart failure risk in patients with preserved ejection fraction[J]. Lab Med, 2021, 52(4):346-351. [56] 韩嘉明,段豪亮,刘杏利,等. 血浆氧化三甲胺水平与心力衰竭患者预后关系的Meta分析[J]. 实用心脑肺血管病杂志,2023,31(5):89-95. [57] SUN X, JIAO X, MA Y, et al. Trimethylamine N-oxide induces inflammation and endothelial dysfunction in human umbilical vein endothelial cells via activating ROS-TXNIP-NLRP3 inflammasome[J]. Biochem Biophys Res Commun, 2016, 481(1/2): 63-70. [58] SHIH D M, ZHU W, SCHUGAR R C, et al. Genetic deficiency of flavin-containing monooxygenase 3 (Fmo3) protects against thrombosis but has only a minor effect on plasma lipid levels-brief report[J]. Arterioscler Thromb Vasc Biol, 2019, 39(6): 1045-1054. [59] YANG W, ZHANG S, ZHU J, et al. Gut microbe-derived metabolite trimethylamine N-oxide accelerates fibroblast-myofibroblast differentiation and induces cardiac fibrosis[J]. J Mol Cell Cardiol, 2019, 134: 119-130. [60] MEYER K A, SHEA J W. Dietary choline and betaine and risk of CVD: a systematic review and meta-analysis of prospective studies[J]. Nutrients, 2017, 9(7): 711. [61] 刘冬雪.三甲胺N-氧化物与心血管疾病的研究进展[J].临床与病理杂志,2022,42(11):2821-2825. [62] HSU C N, HOU C Y, CHAN J Y H, et al. Hypertension programmed by perinatal high-fat diet: effect of maternal gut microbiota-targeted therapy[J]. Nutrients, 2019, 11(12):2908. [63] LIANG X, ZHANG Z, LV Y, et al. Reduction of intestinal trimethylamine by probiotics ameliorated lipid metabolic disorders associated with atherosclerosis[J]. Nutrition, 2020, 79/80:110941. [64] 张再强,丁家望,汪心安.三甲胺-N-氧化物与心血管疾病研究进展[J].中国老年学杂志,2018,38(15):3807-3810. |
| [1] | . [J]. Practical Geriatrics, 2024, 38(10): 974-978. |
| [2] | YUAN Wan, ZHANG Yu-lian, YAO Li-pei, XU Cui-xiang, WANG Na-na, ZHANG Hui-ying, MA Yun-miao. Correlation between chronic constipation and frailty in elderly inpatients [J]. Practical Geriatrics, 2022, 36(5): 463-467. |
| [3] | DING Zhi-qiang, LI Meng-ting, ZHANG Liu-ping, WANG Yue. Analysis of current status and influencing factors of constipation in elderly patients undergoing dialysis [J]. Practical Geriatrics, 2022, 36(4): 333-336. |
| [4] | . [J]. Practical Geriatrics, 2021, 35(8): 863-865. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|