Practical Geriatrics ›› 2023, Vol. 37 ›› Issue (9): 873-877.doi: 10.3969/j.issn.1003-9198.2023.09.003
Previous Articles Next Articles
Received:
2023-04-20
Online:
2023-09-20
Published:
2023-09-21
CLC Number:
[1] HOSNY A, PARMAR C, QUACKENBUSH J. Artificial intelligence in radiology[J]. Nat Rev Cancer, 2018,18(8):500-510. [2] MIRSADEGHI M, BEHNAM H, SHALBAF R, et al. Characterizing awake and anesthetized states using a dimensionality reduction method[J]. J Med Syst, 2016,40(1):13. [3] CONNOR C W. Artificial intelligence and machine learning in anesthesiology[J]. Anesthesiology,2019,131(6):1346-1359. [4] HASHIMOTO D A, WITKOWSKI E, GAO L, et al. Artificial intelligence in anesthesiology: current techniques, clinical applications, and limitations[J]. Anesthesiology, 2020,132(2):379-394. [5] 薛庆生,于布为.迎接麻醉学的人工智能时代[J].上海医学,2018,41(5):260-262. [6] BUSNATU Ş, NICULESCU A G, BOLOCAN A, et al. Clinical applications of artificial intelligence-an updated overview[J]. J Clin Med,2022,11(8):2265. [7] BAHL M. Artificial intelligence: a primer for breast imaging radiologists[J]. J Breast Imaging,2020,2(4):304-314. [8] BI Q, GOODMAN K E, KAMINSKY J, et al. What is machine learning? A primer for the epidemiologist[J]. Am J Epidemiol, 2019,188(12):2222-2239. [9] ASGARI S, ADAMS H, KASPROWICZ M, et al. Feasibility of hidden markov models for the description of time-varying physiologic state after severe traumatic brain injury[J]. Crit Care Med, 2019, 47(11):e880-e885. [10] PADMANABHAN R, MESKIN N, HADDAD W M. Optimal adaptive control of drug dosing using integral reinforcement learning[J]. Math Biosci, 2019, 309:131-142. [11] SHEN Y T, CHEN L, YUE W W, et al. Artificial intelligence in ultrasound[J]. Eur J Radiol, 2021,139:109717. [12] GOLDENBERG S L, NIR G, SALCUDEAN S E. A new era: artificial intelligence and machine learning in prostate cancer[J]. Nat Rev Urol, 2019, 16(7):391-403. [13] EGGER J, GSAXNER C, PEPE A, et al. Medical deep learning - a systematic meta-review[J]. Comput Methods Programs Biomed,2022,221:106874. [14] 万程,陈柏兵,沈建新,等.基于人工智能ResNeXt的高度近视诊断方法[J].实用老年医学,2022,36(3):280-283. [15] SHIN Y, YANG J, LEE Y H, et al. Artificial intelligence in musculoskeletal ultrasound imaging[J]. Ultrasonography, 2021,40(1):30-44. [16] SOFFER S, BEN-COHEN A, SHIMON O, et al. Convolutional neural networks for radiologic images: a radiologist's guide[J]. Radiology,2019,290(3):590-606. [17] NERI E, COPPOLA F, MIELE V, et al. Artificial intelligence: who is responsible for the diagnosis?[J]. Radiol Med, 2020,125(6):517-521. [18] SHEAR T D, DESHUR M, BENSON J, et al. The effect of an electronic dynamic cognitive aid versus a static cognitive aid on the management of a simulated crisis: a randomized controlled trial[J]. J Med Syst, 2018, 43(1):6. [19] LIU Q, CHEN Y F, FAN S Z, et al. EEG signals analysis using multiscale entropy for depth of anesthesia monitoring during surgery through artificial neural networks[J]. Comput Math Methods Med, 2015, 2015:232381. [20] SADRAWI M, FAN S Z, ABBOD M F, et al. Computational depth of anesthesia via multiple vital signs based on artificial neural networks[J].Biomed Res Int, 2015, 2015:536863. [21] HEVER G, COHEN L, O'CONNOR M F, et al. Machine learning applied to multi-sensor information to reduce false alarm rate in the ICU[J]. J Clin Monit Comput,2020,34(2):339-352. [22] LUNDBERG S M, NAIR B, VAVILALA M S, et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery[J]. Nat Biomed Eng, 2018,2(10):749-760. [23] HATIB F, JIAN Z, BUDDI S, et al. Machine-learning algorithm to predict hypotension based on high-fidelity arterial pressure waveform analysis[J]. Anesthesiology, 2018,129(4):663-674. [24] DALESIO N M, DIAZ-RODRIGUEZ N, KOKA R, et al. Development of a multidisciplinary pediatric airway program: an institutional experience[J]. Hosp Pediatr, 2019, 9(6):468-475. [25] ALEXANDER J C, JOSHI G P. Anesthesiology, automation, and artificial intelligence[J]. Proc: Bayl Univ Med Cent, 2017,31(1):117-119. [26] FREUNDLICH R E, EHRENFELD J M. Anesthesia information management: clinical decision support[J]. Curr Opin Anaesthesiol,2017,30(6):705-709. [27] LEE H C, RYU H G, CHUNG E J, et al. Prediction of bispectral index during target-controlled infusion of propofol and remifentanil: a deep learning approach[J]. Anesthesiology, 2018,128(3):492-501. [28] HETHERINGTON J, LESSOWAY V, GUNKA V, et al. SLIDE: automatic spine level identification system using a deep convolutional neural network[J]. Int J Comput Assist Radiol Surg, 2017, 12(7):1189-1198. [29] CHEN X, OWEN C A, HUANG E C, et al. Artificial intelligence in echocardiography for Anesthesiologists[J]. J Cardiothorac Vasc Anesth, 2021,35(1):251-261. [30] OLESEN A E, GRØNLUND D, GRAM M, et al. Prediction of opioid dose in cancer pain patients using genetic profiling: not yet an option with support vector machine learning[J]. BMC Res Notes, 2018, 11(1):78. [31] TIGHE P J, LUCAS S D, EDWARDS D A, et al. Use of machine-learning classifiers to predict requests for preoperative acute pain service consultation[J]. Pain Med,2012,13(10):1347-1357. [32] GONZALEZ-CAVA J M, ARNAY R, PEREZ J A M, et al. A machine learning based system for analgesic drug delivery[C]. International joint Conference SOCO'17-CISIS'17-ICEUTE'17, 2017, 649: 461-470. [33] BEN-ISRAEL N, KLIGER M, ZUCKERMAN G, et al. Monitoring the nociception level: a multi-parameter approach[J]. J Clin Monit Comput, 2013, 27(6):659-668. [34] GRAM M, ERLENWEIN J, PETZKE F, et al. Prediction of postoperative opioid analgesia using clinical-experimental parameters and electroencephalography[J]. Eur J Pain,2017,21(2):264-277. [35] SCHUSTER M, PEZZELLA M, TAUBE C, et al. Delays in starting morning operating lists: an analysis of more than 20,000 cases in 22 German hospitals[J]. Dtsch Arztebl Int, 2013,110(14):237-243. [36] COMBES C, MESKENS N, RIVAT C, et al. Using a KDD process to forecast the duration of surgery[J]. Int J Prod Econ, 2008, 112: 279-293. [37] 李福军,由艳秋,李悦,等.人工智能专家系统在临床麻醉教学中的应用与评价[J].中国医院管理,2020,40(8):73-75. [38] 钱柳,刘进.人工智能在麻醉学科的前景与挑战[J].临床麻醉学杂志,2021,37(6):565-568. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|