Practical Geriatrics ›› 2021, Vol. 35 ›› Issue (10): 1076-1079.doi: 10.3969/j.issn.1003-9198.2021.10.019
Previous Articles Next Articles
Received:
2021-04-26
Online:
2021-10-20
Published:
2021-10-13
CLC Number:
[1] FUKUMOTO H, TENNIS M, LOCASCIO J J, et al. Age but not diagnosis is the main predictor of plasma amyloid beta-protein levels[J]. Arch Neurol, 2003, 60(7):958-964. [2] SONG F, POLJAK A, VALENZUELA M, et al. Meta-analysis of plasma amyloid-β levels in Alzheimer’s disease[J]. J Alzheimers Dis, 2011, 26(2):365-375. [3] KIM H J, PARK K W, KIM T E, et al. Elevation of the plasma Aβ40/Aβ42 ratio as a diagnostic marker of sporadic early-onset Alzheimer’s disease[J]. J Alzheimers Dis, 2015, 48(4):1043-1050. [4] JANELIDZE S, STOMRUD E, PALMQVIST S, et al. Plasma β-amyloid in Alzheimer’s disease and vascular disease[J]. Sci Rep, 2016, 6:26801. [5] CHEN T B, LEE Y J, LIN S Y, et al. Plasma Aβ42 and total tau predict cognitive decline in amnestic mild cognitive impairment[J]. Sci Rep, 2019, 9(1): 13984. [6] CHEN T B, LAI Y H, KE T L, et al. Changes in plasma amyloid and tau in a longitudinal study of normal aging, mild cognitive impairment, and Alzheimer’s disease[J]. Dement Geriatr Cogn Disord, 2019, 48(3/4):180-195. [7] YANG Y H, HUANG L C, HSIEH S W, et al. Dynamic blood concentrations of Aβ1-40 and Aβ1-42 in Alzheimer’s disease[J]. Front Cell Dev Biol, 2020, 8:768. [8] RISACHER S L, FANDOS N, ROMERO J, et al. Plasma amyloid beta levels are associated with cerebral amyloid and tau deposition[J]. Alzheimers Dement: Amst, 2019, 11:510-519. [9] MATTSSON N, ZETTERBERG H, JANELIDZE S, et al. Plasma tau in Alzheimer disease[J]. Neurology, 2016, 87(17):1827-1835. [10] YANG C C, CHIU M J, CHEN T F, et al. Assay of plasma phosphorylated tau protein (threonine 181) and total tau protein in early-stage Alzheimer’s disease[J]. J Alzheimers Dis, 2018, 61(4):1323-1332. [11] MIELKE M M, HAGEN C E, WENNBERG A M V, et al. Association of plasma total tau level with cognitive decline and risk of mild cognitive impairment or dementia in the Mayo Clinic Study on Aging[J]. JAMA Neurol, 2017, 74(9): 1073-80. [12] MIELKE M M, HAGEN C E, XU J, et al. Plasma phospho-tau181 increases with Alzheimer’s disease clinical severity and is associated with tau- and amyloid-positron emission tomography[J]. Alzheimers Dement, 2018, 14(8):989-997. [13] KARIKARI T K, BENEDET A L, ASHTON N J, et al. Diagnostic performance and prediction of clinical progression of plasma phospho-tau181 in the Alzheimer’s disease neuroimaging initiative[J]. Mol Psychiatry, 2021, 26(2):429-442. [14] THIJSSEN E H, LA JOIE R, WOLF A, et al. Diagnostic value of plasma phosphorylated tau181 in Alzheimer’s disease and frontotemporal lobar degeneration[J]. Nat Med, 2020, 26(3):387-397. [15] LANTERO RODRIGUEZ J, KARIKARI T K, SUAREZ-CALVET M, et al. Plasma p-tau181 accurately predicts Alzheimer’s disease pathology at least 8 years prior to post-mortem and improves the clinical characterisation of cognitive decline[J]. Acta Neuropathol, 2020, 140(3):267-278. [16] JANELIDZE S, BERRON D, SMITH R, et al. Associations of plasma phospho-tau217 levels with tau positron emission tomography in early Alzheimer disease [J]. JAMA Neurol, 2020, 78(2):149-156. [17] MATTSSON-CARLGREN N, JANELIDZE S, PALMQVIST S, et al. Longitudinal plasma p-tau217 is increased in early stages of Alzheimer’s disease[J]. Brain, 2020, 143(11): 3234-3241. [18] BARTHELEMY N R, HORIE K, SATO C, et al. Blood plasma phosphorylated-tau isoforms track CNS change in Alzheimer’s disease[J]. J Exp Med, 2020, 217(11):e20200861. [19] PALMQVIST S, JANELIDZE S, QUIROZ Y T, et al. Discriminative accuracy of plasma phospho-tau217 for Alzheimer disease vs other neurodegenerative disorders[J]. JAMA, 2020, 324(8):772-781. [20] ASHTON N J, PASCOAL T A, KARIKARI T K, et al. Plasma p-tau231: a new biomarker for incipient Alzheimer’s disease pathology[J]. Acta Neuropathol, 2021, 141(5):709-724. [21] WESTON P S J, POOLE T, RYAN N S, et al. Serum neurofilament light in familial Alzheimer disease: a marker of early neurodegeneration[J]. Neurology, 2017, 89(21): 2167-2175. [22] KHALIL M, TEUNISSEN C E, OTTO M, et al. Neurofilaments as biomarkers in neurological disorders[J]. Nat Rev Neurol, 2018, 14(10):577-589. [23] RAJAN K B, AGGARWAL N T, MCANINCH E A, et al. Remote blood biomarkers of longitudinal cognitive outcomes in a population study[J]. Ann Neurol, 2020, 88(6):1065-1076. [24] SUGARMAN M A, ZETTERBERG H, BLENNOW K, et al. A longitudinal examination of plasma neurofilament light and total tau for the clinical detection and monitoring of Alzheimer’s disease[J]. Neurobiol Aging, 2020, 94:60-70. [25] RAKET L L, KUHNEL L, SCHMIDT E, et al. Utility of plasma neurofilament light and total tau for clinical trials in Alzheimer’s disease[J]. Alzheimers Dement: Amst, 2020, 12(1):e12099. [26] BENUSSI A, KARIKARI T K, ASHTON N, et al. Diagnostic and prognostic value of serum NfL and p-Tau181 in frontotemporal lobar degeneration[J]. J Neurol Neurosurg Psychiatry, 2020, 91(9):960-967. [27] GUO R, FAN G, ZHANG J, et al. A 9-microRNA signature in serum serves as a noninvasive biomarker in early diagnosis of Alzheimer’s disease[J]. J Alzheimers Dis, 2017, 60(4):1365-1377. [28] YANG Q, ZHAO Q, YIN Y. miR-133b is a potential diagnostic biomarker for Alzheimer’s disease and has a neuroprotective role[J]. Exp Ther Med, 2019, 18(4):2711-2718. [29] NAGARAJ S, ZOLTOWSKA K M, LASKOWSKA-KASZUB K, et al. MicroRNA diagnostic panel for Alzheimer’s disease and epigenetic trade-off between neurodegeneration and cancer[J]. Ageing Res Rev, 2019, 49:125-143. [30] TAKOUSIS P, SADLON A, SCHULZ J, et al. Differential expression of microRNAs in Alzheimer’s disease brain, blood, and cerebrospinal fluid[J]. Alzheimers Dement, 2019, 15(11):1468-1477. [31] ZHUANG J C, CAI P P, CHEN Z J, et al. Long noncoding RNA MALAT1 and its target microRNA-125b are potential biomarkers for Alzheimer’s disease management via interactions with FOXQ1, PTGS2 and CDK5[J]. Am J Transl Res, 2020, 12(9):5940-5954. [32] YANG T T, LIU C G, GAO S C, et al. The serum exosome derived microRNA-135a, -193b, and -384 were potential Alzheimer’s disease biomarkers[J]. Biomed Environ Sci, 2018, 31(2):87-96. [33] LI F, XIE X Y, SUI X F, et al. Profile of pathogenic proteins and microRNAs in plasma-derived extracellular vesicles in Alzheimer’s Disease: A Pilot Study[J]. Neuroscience, 2020, 432:240-246. |
[1] | SUN Li, YIN Weihong, JING Jun, QIAN Xiali. Effects of intraoperative subanesthetic dose of esketamine on early postoperative cognitive dysfunction in elderly patients undergoing spinal surgery [J]. Practical Geriatrics, 2024, 38(10): 1039-1043. |
[2] | . [J]. Practical Geriatrics, 2023, 37(12): 1249-1254. |
[3] | . [J]. Practical Geriatrics, 2023, 37(10): 984-988. |
[4] | . [J]. Practical Geriatrics, 2023, 37(10): 1041-1043. |
[5] | . [J]. Practical Geriatrics, 2023, 37(10): 1059-1063. |
[6] | . [J]. Practical Geriatrics, 2023, 37(9): 869-872. |
[7] | WANG Min, GUO Wen-jun, TANG Zhong-quan, ZHAO Xiao-min, OU Ting, LI Yun-tao. Association between hearing impairment and Alzheimer's disease: a Meta-analysis [J]. Practical Geriatrics, 2023, 37(9): 915-919. |
[8] | . [J]. Practical Geriatrics, 2023, 37(8): 757-760. |
[9] | . [J]. Practical Geriatrics, 2023, 37(5): 521-523. |
[10] | . [J]. Practical Geriatrics, 2023, 37(4): 335-338. |
[11] | . [J]. Practical Geriatrics, 2023, 37(3): 234-237. |
[12] | GUO Xiao-juan, LIU Jie, WANG Jin, LU Wen-hui, GAO Ling, QU Qiu-min. Investigation and analysis of influencing factors of the medication adherence in patients with Alzheimer’s disease in Xi’an [J]. Practical Geriatrics, 2023, 37(1): 47-50. |
[13] | . [J]. Practical Geriatrics, 2021, 35(12): 1304-1308. |
[14] | . [J]. Practical Geriatrics, 2021, 35(8): 795-797. |
[15] | . [J]. Practical Geriatrics, 2021, 35(8): 866-870. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|