Practical Geriatrics ›› 2024, Vol. 38 ›› Issue (5): 516-437.doi: 10.3969/j.issn.1003-9198.2024.05.020
Previous Articles Next Articles
Received:
2023-08-04
Online:
2024-05-20
Published:
2024-05-23
CLC Number:
[1] BURNS M, RIZVI S H M, TSUKAHARA Y, et al. Role of glutaredoxin-1 and glutathionylation in cardiovascular diseases[J]. Int J Mol Sci, 2020,21(18): 6803. [2] 付奕豪,徐逸轩,严宏,等.谷氧还蛋白在眼病中的作用研究进展[J].山东大学耳鼻喉眼学报,2021,35(3):125-130. [3] ZHAO T, ZHANG-AKIYAMA Q M. Deficiency of Grx1 leads to high sensitivity of HeLaS3 cells to oxidative stress via excessive accumulation of intracellular oxidants including ROS[J]. Free Radic Res, 2020,54(8/9): 585-605. [4] MATSUI R, FERRAN B, OH A, et al. Redox regulationvia glutaredoxin-1 and proteins-glutathionylation[J]. Antioxid Redox Signal, 2020,32(10):677-700. [5] OGATA F T, BRANCO V, VALE F F, et al. Glutaredoxin: discovery, redox defense and much more[J]. Redox Biol, 2021,43:101975. [6] LI Y, REN M, WANG X, et al.Glutaredoxin 1 mediates the protective effect of steady laminar flow on endothelial cells against oxidative stress-induced apoptosis via inhibiting Bim[J]. Sci Rep, 2017,7(1):15539. [7] SUN X, YE C, DENG Q, et al. Contribution of glutaredoxin-1 to Fas S-glutathionylation and inflammation in ethanol-induced liver injury[J]. Life Sci, 2021,264:118678. [8] YANG F, YI M, LIU Y, et al. Glutaredoxin-1 silencing induces cell senescence via p53/p21/p16 signaling axis[J]. J Proteome Res, 2018,17(3):1091-1100. [9] FAN Q, LI D, ZHAO Z, et al.Protective effect of glutaredoxin 1 against oxidative stress in lens epithelial cells of age-related nuclear cataracts[J]. Mol Vis, 2022,28:70-82. [10] DAENEN K, ANDRIES A, MEKAHLI D, et al.Oxidative stress in chronic kidney disease[J]. Pediatr Nephrol,2019,34(6):975-991. [11] LIAN D, CHEN M, WU H, et al.The role of oxidative stress in skeletal muscle myogenesis and muscle disease[J]. Antioxidants: Basel, 2022,11(4):755. [12] DIESEN D L, KUO P C. Nitric oxide and redox regulation in the liver: Part I. General considerations and redox biology in hepatitis[J]. J Surg Res, 2010,162(1):95-109. [13] LÓPEZ-GRUESO M J, GONZÁLEZ-OJEDA R, REQUEJO-AGUILAR R, et al. Thioredoxin and glutaredoxin regulate metabolism through different multiplex thiol switches[J]. Redox Biol, 2019,21:101049. [14] YI X, ZHU Q, WU X, et al.Histone methylation and oxidative stress in cardiovascular diseases[J]. Oxid Med Cell Longev, 2022,2022:6023710. [15] SENONER T, DICHTL W. Oxidative stress in cardiovascular diseases: still a therapeutic target?[J]. Nutrients, 2019,11(9):2090. [16] OKUDA M, INOUE N, AZUMI H, et al.Expression of glutaredoxin in human coronary arteries: its potential role in antioxidant protection against atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2001, 21(9):1483-1487. [17] RIZVI S, SHAO D, PIMENTAL D, et al. S-glutathionylation of glyceraldehyde 3-phosphate dehydrogenase regulates sirtuin-1 function through trans-glutathionylation: implication of glutaredoxin-1[J]. Free Radic Biol Med, 2019, 145:S37. [18] WANG L, AHN Y J, ASMIS R. Inhibition of myeloid HDAC2 upregulates glutaredoxin 1 expression, improves protein thiol redox state and protects against high-calorie diet-induced monocyte dysfunction and atherosclerosis[J]. Atherosclerosis, 2021,328:23-32. [19] AHN Y J, WANG L, TAVAKOLI S, et al. Glutaredoxin 1 controls monocyte reprogramming during nutrient stress and protects mice against obesity and atherosclerosis in a sex-specific manner[J]. Nat Commun, 2022,13(1):790. [20] WATANABE Y, NAKAMURA T, UEMATSU M, et al.Glutaredoxin-1 levels in plasma can predict future events in patients with cardiovascular diseases[J]. Free Radic Biol Med, 2021,176:241-245. [21] QIU Z, LI X, DUAN C, et al.Glutaredoxin 1 protects neurons from oxygen-glucose deprivation/reoxygenation (OGD/R)-induced apoptosis and oxidative stress via the modulation of GSK-3β/Nrf2 signaling[J]. J Bioenerg Biomembr, 2021,53(4):369-379. [22] KOMMADDI R P, TOMAR D S, KARUNAKARAN S, et al. Glutaredoxin1 diminishes amyloid beta-mediated oxidation of F-actin and reverses cognitive deficits in an Alzheimer’s disease mouse model[J]. Antioxid Redox Signal, 2019,31(18):1321-1338. [23] RYU E J, KIM D W, SHIN M J, et al. PEP-1-glutaredoxin 1 protects against hippocampal neuronal cell damage from oxidative stress via regulation of MAPK and apoptotic signaling pathways[J]. Mol Med Rep, 2018,18(2):2216-2228. [24] YIN J, XU R, WEI J, et al.The protective effect of glutaredoxin 1/DJ-1/HSP70 signaling in renal tubular epithelial cells injury induced by ischemia[J]. Life Sci, 2019,223:88-94. [25] GORELENKOVA MILLER O, MIEYAL J J. Critical roles of glutaredoxin in brain cells-implications for Parkinson’s disease[J]. Antioxid Redox Signal,2019,30(10):1352-1368. [26] VERMA A, RAY A, BAPAT D, et al. Glutaredoxin 1 downregulation in the substantia nigra leads to dopaminergic degeneration in mice[J]. Mov Disord, 2020,35(10):1843-1853. [27] YANG X, PAN X, ZHAO X, et al. Autophagy and age-related eye diseases[J]. Biomed Res Int, 2019,2019:5763658. [28] ZHANG J, YAN H, LÖFGREN S, et al.Ultraviolet radiation-induced cataract in mice: the effect of age and the potential biochemical mechanism[J]. Invest Ophthalmol Vis Sci, 2012,53(11):7276-7285. [29] KRONSCHLAGER M, GALICHANIN K, EKSTROM J, et al.Protective effect of the thioltransferase gene on in vivo UVR-300 nm-induced cataract[J]. Invest Ophthalmol Vis Sci, 2012,53(1):248-252. [30] FAN Q, ZHANG Y, LIU Y, et al. Glutaredoxin desensitizes lens to oxidative stress by connecting and integrating specific signaling and transcriptional regulation for antioxidant response[J]. Cell Physiol Biochem, 2016,39(5):1813-1826. [31] HANSCHMANN E, WILMS C, FALK L, et al.Cytosolic glutaredoxin 1 is upregulated in AMD and controls retinal pigment epithelial cells proliferation via β-catenin[J]. Biochem Biophys Res Commun, 2022,618:24-29. [32] LIU X, JANN J, XAVIER C, et al.Glutaredoxin 1 (Grx1) protects human retinal pigment epithelial cells from oxidative damage by preventing AKT glutathionylation[J]. Invest Ophthalmol Vis Sci, 2015,56(5):2821-2832. [33] YANG Y, LIAO Z, XIAO Q. Metformin ameliorates skeletal muscle atrophy in Grx1 KO mice by regulating intramuscular lipid accumulation and glucose utilization[J]. Biochem Biophys Res Commun, 2020,533(4):1226-1232. [34] FERNÁNDEZ-PUENTE E, PALOMERO J. Genetically encoded biosensors to monitor intracellular reactive oxygen and nitrogen species and glutathione redox potential in skeletal muscle cells[J]. Int J Mol Sci, 2021,22(19):10876. [35] YU L, ZHANG W, HAN X, et al. Hypoxia-induced ROS contribute to myoblast pyroptosis during obstructive sleep apnea via the NF-kappaB/HIF-1alpha signaling pathway[J]. Oxid Med Cell Longev, 2019,2019:4596368. [36] GUO H, ZHANG Y, HAN T, et al.Chronic intermittent hypoxia aggravates skeletal muscle aging by down-regulating Klc1/grx1 expression via Wnt/β-catenin pathway[J]. Arch Gerontol Geriatr, 2021,96:104460. [37] GUO Y, LIU Y, ZHAO S, et al. Oxidative stress-induced FABP5 S-glutathionylation protects against acute lung injury by suppressing inflammation in macrophages[J]. Nat Commun, 2021,12(1):7094. [38] LIU X, LI K, ZHANG F, et al.Ablation of glutaredoxin 1 promotes pulmonary angiogenesis and alveolar formation in hyperoxia-injured lungs by modifying HIF-1α stability and inhibiting the NF-κB pathway[J]. Biochem Biophys Res Commun, 2021,525(2):528-535. [39] HAN W, ZHANG F, MO D, et al. Involvement of HIF1 stabilization and VEGF signaling modulated by Grx-1 in murine model of bronchopulmonary dysplasia[J]. Cell Biol Int, 2023,47(4):796-807. |
[1] | XIE Yuanyuan, CHEN Jingmian, DENG Ting, GAO Lei. Risk factors for secondary hyperkalemia after potassium supplement in elderly patients with hypokalemia [J]. Practical Geriatrics, 2024, 38(7): 701-704. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|