Practical Geriatrics ›› 2023, Vol. 37 ›› Issue (4): 402-406.doi: 10.3969/j.issn.1003-9198.2023.04.020
Previous Articles Next Articles
Received:
2022-04-15
Online:
2023-04-20
Published:
2023-03-31
CLC Number:
[1] KANG S S, AHN E H, YE K. Delta-secretase cleavage of Tau mediates its pathology and propagation in Alzheimer’s disease[J]. Exp Mol Med, 2020, 52(8):1275-1287. [2] RODA A R, SERRA-MIR G, MONTOLIU-GAYA L, et al. Amyloid-beta peptide and tau protein crosstalk in Alzheimer’s disease[J]. Neural Regen Res, 2022,17(8):1666-1674. [3] BABULAL G M, QUIROZ Y T, ALBENSI B C, et al. Perspectives on ethnic and racial disparities in Alzheimer’s disease and related dementias: update and areas of immediate need[J]. Alzheimers Dement, 2019,15(2):292-312. [4] O’BRIEN J, HAYDER H, ZAYED Y, et al. Overview of microRNA biogenesis, mechanisms of actions, and circulation[J]. Front Endocrinol: Lausanne, 2018, 9:402. [5] CHEN K, RAJEWSKY N. The evolution of gene regulation by transcription factors and microRNAs[J]. Nat Rev Genet, 2007,8(2):93-103. [6] FINNERTY J R, WANG W X, HEBERT S S, et al. The miR-15/107 group of microRNA genes: evolutionary biology, cellular functions, and roles in human diseases[J]. J Mol Biol, 2010, 402(3):491-509. [7] GABRIELE R, ABEL E, FOX N C, et al. Knockdown of amyloid precursor protein: biological consequences and clinical opportunities[J]. Front Neurosci, 2022, 16:835645. [8] HAMPEL H, VASSAR R, DE STROOPER B, et al. The beta-secretase BACE1 in Alzheimer’s disease[J]. Biol Psychiatry, 2021, 89(8):745-756. [9] LIU W, LIU C, ZHU J, et al. MicroRNA-16 targets amyloid precursor protein to potentially modulate Alzheimer’s-associated pathogenesis in SAMP8 mice[J]. Neurobiol Aging, 2012,33(3):522-534. [10] ZHANG B, CHEN C F, WANG A H, et al. MiR-16 regulates cell death in Alzheimer’s disease by targeting amyloid precursor protein[J]. Eur Rev Med Pharmacol Sci, 2015,19(21):4020-4027. [11] MULLER M, KUIPERIJ H B, CLAASSEN J A, et al. MicroRNAs in Alzheimer’s disease: differential expression in hippocampus and cell-free cerebrospinal fluid[J]. Neurobiol Aging, 2014,35(1):152-158. [12] ZHONG Z, YUAN K, TONG X, et al. MiR-16 attenuates beta-amyloid-induced neurotoxicity through targeting beta-site amyloid precursor protein-cleaving enzyme 1 in an Alzheimer’s disease cell model[J]. Neuroreport, 2018,29(16):1365-1372. [13] SMITH P, AL H A, GIRARD J, et al. In vivo regulation of amyloid precursor protein neuronal splicing by microRNAs[J]. J Neurochem, 2011, 116(2):240-247. [14] JIANG Z P, ZHOU T B. Role of miR-107 and its signaling pathways in diseases[J]. J Recept Signal Transduct Res, 2014,34(5):338-341. [15] WANG W X, RAJEEV B W, STROMBERG A J, et al. The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1[J]. J Neurosci, 2008,28(5):1213-1223. [16] NELSON P T, WANG W X. MiR-107 is reduced in Alzheimer’s disease brain neocortex: validation study[J]. J Alzheimers Dis, 2010, 21(1):75-79. [17] WANG T, CHEN K, LI H, et al. The feasibility of utilizing plasma miRNA107 and BACE1 messenger RNA gene expression for clinical diagnosis of amnestic mild cognitive impairment[J]. J Clin Psychiatry, 2015, 76(2):135-141. [18] ZHU H C, WANG L M, WANG M, et al. MicroRNA-195 downregulates Alzheimer’s disease amyloid-beta production by targeting BACE1[J]. Brain Res Bull, 2012,88(6):596-601. [19] AI J, SUN L H, CHE H, et al. MicroRNA-195 protects against dementia induced by chronic brain hypoperfusion via its anti-amyloidogenic effect in rats[J]. J Neurosci, 2013,33(9):3989-4001. [20] WANG J, GU B J, MASTERS C L, et al. A systemic view of Alzheimer disease - insights from amyloid-beta metabolism beyond the brain[J]. Nat Rev Neurol, 2017,13(10):612-623. [21] YANG H, LI J, LI X, et al. Based on molecular structures: amyloid-beta generation, clearance, toxicity and therapeutic strategies[J]. Front Mol Neurosci, 2022, 15:927530. [22] HUANG N, WU J, QIU W, et al. MiR-15a and miR-16 induce autophagy and enhance chemosensitivity of Camptothecin[J]. Cancer Biol Ther, 2015,16(6):941-948. [23] LI G, CHEN T, ZHU Y, et al. MiR-103 alleviates autophagy and apoptosis by regulating SOX2 in LPS-injured PC12 cells and SCI rats[J]. Iran J Basic Med Sci, 2018, 21(3):292-300. [24] LI W, WANG S S, SHAN B Q, et al. MiR-103-3p targets Ndel1 to regulate neural stem cell proliferation and differentiation[J]. Neural RegenRes, 2022, 17(2):401-408. [25] SWEENEY M D, ZHAO Z, MONTAGNE A, et al. Blood-brain barrier: from physiology to disease and back[J]. Physiol Rev, 2019, 99(1):21-78. [26] LIU W, CAI H, LIN M, et al. MicroRNA-107 prevents amyloid-beta induced blood-brain barrier disruption and endothelial cell dysfunction by targeting Endophilin-1[J]. Exp Cell Res, 2016, 343(2):248-257. [27] LIN M, ZHU L, WANG J, et al. MiR-424-5p maybe regulate blood-brain barrier permeability in a model in vitro with Abeta incubated endothelial cells[J]. Biochem Biophys Res Commun, 2019, 517(3):525-531. [28] ZHU L, LIN M, MA J, et al. The role of LINC00094/miR-224-5p (miR-497-5p)/Endophilin-1 axis in Memantine mediated protective effects on blood-brain barrier in AD microenvironment[J]. J Cell Mol Med, 2019, 23(5):3280-3292. [29] WANG W X, HUANG Q, HU Y, et al. Patterns of micro RNA expression in normal and early Alzheimer’s disease human temporal cortex: white matter versus gray matter[J]. Acta Neuropathol, 2011, 121(2):193-205. [30] HOLPER S, WATSON R, YASSI N. Tau as a biomarker of neurodegeneration[J]. Int J Mol Sci, 2022, 23(13):7307. [31] PARSI S, SMITH P Y, GOUPIL C, et al. Preclinical evaluation of miR-15/107 family members as multifactorial drug targets for Alzheimer’s disease[J]. Mol Ther Nucleic Acids, 2015, 4(10):e256. [32] HEBERT S S, PAPADOPOULOU A S, SMITH P, et al. Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration[J]. Hum Mol Genet, 2010, 19(20):3959-3969. [33] MONCINI S, LUNGHI M, VALMADRE A, et al. The miR-15/107 family of microRNA genes regulates CDK5R1/p35 with implications for Alzheimer’s disease pathogenesis[J]. Mol Neurobiol, 2017, 54(6):4329-4342. [34] MONCINI S, SALVI A, ZUCCOTTI P, et al. The role of miR-103 and miR-107 in regulation of CDK5R1 expression and in cellular migration[J]. PLoS One, 2011,6(5):e20038. [35] MCKEEVER P M, SCHNEIDER R, TAGHDIRI F, et al. MicroRNA expression levels are altered in the cerebrospinal fluid of patients with young-onset Alzheimer’s disease[J]. Mol Neurobiol, 2018, 55(12):8826-8841. [36] YE Z, SUN B, MI X, et al. Gene co-expression network for analysis of plasma exosomal miRNAs in the elderly as markers of aging and cognitive decline[J]. PeerJ, 2020,8:e8318. [37] MINAMIDE L S, STRIEGL A M, BOYLE J A, et al. Neurodegenerative stimuli induce persistent ADF/cofilin-actin rods that disrupt distal neurite function[J]. Nat Cell Biol, 2000,2(9):628-636. [38] WHITEMAN I T, GERVASIO O L, CULLEN K M, et al. Activated actin-depolymerizing factor/cofilin sequesters phosphorylated microtubule-associated protein during the assembly of alzheimer-like neuritic cytoskeletal striations[J]. J Neurosci, 2009, 29(41):12994-13005. [39] YAO J, HENNESSEY T, FLYNT A, et al. MicroRNA-related cofilin abnormality in Alzheimer’s disease[J]. PLoS One, 2010, 5(12):e15546. [40] SUN L H, BAN T, LIU C D, et al. Activation of Cdk5/p25 and tau phosphorylation following chronic brain hypoperfusion in rats involves microRNA-195 down-regulation[J]. J Neurochem, 2015, 134(6):1139-1151. [41] CAO J, HUANG M, GUO L, et al. MicroRNA-195 rescues ApoE4-induced cognitive deficits and lysosomal defects in Alzheimer’s disease pathogenesis[J]. Mol Psychiatry, 2021, 26(9):4687-4701. [42] FORLONI G. Alzheimer’s disease: from basic science to precision medicine approach[J]. BMJ Neurol Open, 2020, 2(2):e79. [43] SINGH R K. Recent trends in the management of Alzheimer’s disease: current therapeutic options and drug repurposing approaches[J]. Curr Neuropharmacol, 2020, 18(9):868-882. [44] BURAK K, LAMOUREUX L, BOESE A, et al. MicroRNA-16 targets mRNA involved in neurite extension and branching in hippocampal neurons during presymptomatic prion disease[J]. Neurobiol Dis, 2018, 112:1-13. [45] SHU B, ZHANG X, DU G, et al. MicroRNA-107 prevents amyloid-beta-induced neurotoxicity and memory impairment in mice[J]. Int J Mol Med, 2018, 41(3):1665-1672. [46] JIAO Y, KONG L, YAO Y, et al. Osthole decreases beta amyloid levels through up-regulation of miR-107 in Alzheimer’s disease[J]. Neuropharmacology, 2016,108:332-344. [47] KE S, YANG Z, YANG F, et al. Long noncoding RNA NEAT1 aggravates Abeta-induced neuronal damage by targeting miR-107 in Alzheimer’s disease[J]. Yonsei Med J, 2019,60(7):640-650. |
[1] | SUN Li, YIN Weihong, JING Jun, QIAN Xiali. Effects of intraoperative subanesthetic dose of esketamine on early postoperative cognitive dysfunction in elderly patients undergoing spinal surgery [J]. Practical Geriatrics, 2024, 38(10): 1039-1043. |
[2] | YE Niansi, HU Hui, DENG Bei, LIU Xueting, ZHOU Shi, LI Yucan, WANG Xiaomeng. Current situation and influencing factors of oral health-related quality of life in elderly with mild cognitive impairment [J]. Practical Geriatrics, 2024, 38(7): 674-678. |
[3] | . [J]. Practical Geriatrics, 2024, 38(5): 433-437. |
[4] | . [J]. Practical Geriatrics, 2024, 38(5): 438-437. |
[5] | . [J]. Practical Geriatrics, 2024, 38(5): 447-437. |
[6] | GUO Jinhua, SHEN Tiemei, CHEN Ling, CUI Hong, WANG Xiaoxia, HUANG Qiao, HUANG Fang, LI Yun, YANG Manqing. Prevalence and risk factors of cognitive function in elderly inrural areas of Guangdong Province [J]. Practical Geriatrics, 2024, 38(5): 456-437. |
[7] | WEI qian, CAI Yingyuan, WANG Shan,TAN Fuyun, LU Xiaowei. Relationship between serum thyrotropin and risk of cognitive impairment in elderly with normalthyroid function and subclinical hypothyroidism [J]. Practical Geriatrics, 2024, 38(5): 486-437. |
[8] | . [J]. Practical Geriatrics, 2024, 38(5): 512-437. |
[9] | JIAO Linna, LI Baoyi, WANG Qin, HE Jianli. Correlation of white matter lesions and cerebral cortex thickness with cognitive dysfunction after mild stroke in the elderly [J]. Practical Geriatrics, 2024, 38(3): 287-290. |
[10] | . [J]. Practical Geriatrics, 2023, 37(4): 335-338. |
[11] | . [J]. Practical Geriatrics, 2023, 37(3): 234-237. |
[12] | . [J]. Practical Geriatrics, 2023, 37(3): 300-303. |
[13] | GUO Xiao-juan, LIU Jie, WANG Jin, LU Wen-hui, GAO Ling, QU Qiu-min. Investigation and analysis of influencing factors of the medication adherence in patients with Alzheimer’s disease in Xi’an [J]. Practical Geriatrics, 2023, 37(1): 47-50. |
[14] | LIU Yadong, GAO Langli, LYU Juan, GE Ning, YUE Jirong. Establishment of a new delirium screening scale for elderly inpatients in China [J]. Practical Geriatrics, 2024, 38(1): 28-33. |
[15] | ZHANG Jia, LIU Xinwei, LIAN Hongyu, LIU Kexin, LI Zitao. Association of hemoglobin concentration with postoperative delirium after hip replacement in elderly patients [J]. Practical Geriatrics, 2024, 38(1): 64-67. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|