[1] GUO J, HUANG X, DOU L, et al. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments[J]. Signal Transduct Target Ther, 2022, 7(1): 391. [2] SHVEDUNOVA M, AKHTAR A. Modulation of cellular processes by histone and non-histone protein acetylation[J]. Nat Rev Mol Cell Biol, 2022, 23(5): 329-349. [3] ALI I, CONRAD R J, VERDIN E, et al. Lysine acetylation goes global: from epigenetics to metabolism and therapeutics[J]. Chem Rev, 2018, 118(3): 1216-1252. [4] ZHONG Q, XIAO X, QIU Y, et al. Protein posttranslational modifications in health and diseases: functions, regulatory mechanisms, and therapeutic implications[J]. Med Comm: 2020, 2023, 4(3): e261. [5] CAI Y, SONG W, LI J, et al. The landscape of aging[J].Sci China Life Sci, 2022, 65(12):2354-2454. [6] 王凯, 范小璇, 王欢, 等. 血管老化发生机制及相关靶点的研究进展[J]. 实用老年医学, 2021, 35(7): 750-753. [7] DING Y N, TANG X, CHEN H Z, et al. Epigenetic regulation of vascular aging and age-related vascular diseases[J]. Adv Exp Med Biol, 2018, 1086: 55-75. [8] TARANTINI S, VALCARCEL-ARES N M, YABLUCHANSKIY A, et al. Treatment with the mitochondrial-targeted antioxidant peptide SS-31 rescues neurovascular coupling responses and cerebrovascular endothelial function and improves cognition in aged mice[J]. Aging Cell, 2018, 17(2): e12731. [9] GORGOULIS V, ADAMS P D, ALIMONTI A, et al. Cellular senescence: defining a path forward[J]. Cell, 2019, 179(4): 813-827. [10] VERMOT A, PETIT-HÄRTLEIN I, SMITH S M E, et al. NADPH oxidases (NOX): an overview from discovery, molecular mechanisms to physiology and pathology[J]. Antioxidants, 2021, 10(6): 890. [11] KAMTCHUM-TATUENE J, SABA L, HELDNER M R, et al. Interleukin-6 predicts carotid plaque severity, vulnerability, and progression[J]. Circ Res, 2022, 131(2): e22-e33. [12] 陈映泉, 钟勇. 心血管老化的机制、标志物和治疗[J]. 实用老年医学, 2024, 38(3): 299-303. [13] DING Q, SHAO C, ROSE P, et al. Epigenetics and vascular senescence-potential new therapeutic targets?[J].Front Pharmacol, 2020, 11: 535395. [14] BURDUSEL D, DOEPPNER T R, SURUGIU R, et al. The intersection of epigenetics and senolytics in mechanisms of aging and therapeutic approaches[J]. Biomolecules, 2024, 15(1): 18. [15] LIU X, JIANG D, HUANG W, et al. Sirtuin 6 attenuates angiotensin II-induced vascular adventitial aging in rat aortae by suppressing the NF-κB pathway[J]. Hypertens Res, 2021, 44(7): 770-780. [16] ECKSCHLAGER T, PLCH J, STIBOROVA M, et al. Histone deacetylase inhibitors as anticancer drugs[J]. Int J Mol Sci, 2017, 18(7): 1414. [17] GUJRAL P, MAHAJAN V, LISSAMAN A C, et al. Histone acetylation and the role of histone deacetylases in normal cyclic endometrium[J]. Reprod Biol Endocrinol, 2020, 18(1): 84. [18] PARK S Y, KIM J S. A short guide to histone deacetylases including recent progress on class II enzymes[J]. Exp Mol Med, 2020, 52(2): 204-212. [19] RAJMAN L, CHWALEK K, SINCLAIR D A. Therapeutic potential of NAD-boosting molecules: the in vivo evidence[J]. Cell Metab, 2018, 27(3): 529-547. [20] ZHA S, LI Z, CAO Q, et al. PARP1 inhibitor (PJ34) improves the function of aging-induced endothelial progenitor cells by preserving intracellular NAD+ levels and increasing SIRT1 activity[J]. Stem Cell Res Ther, 2018, 9(1): 224. [21] CAMACHO-PEREIRA J, TARRAGÓ M G, CHINI C C S, et al. CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism[J]. Cell Metab, 2016, 23(6): 1127-1139. [22] LI D, LI W, LIAO X, et al. NAD+-dependent Sirt6 is a key regulator involved in telomere shortening of in vitro-cultured preimplantation embryos[J]. Commun Biol, 2025, 8(1): 1275. [23] LIN Z, DING Q, LI X, et al. Targeting epigenetic mechanisms in vascular aging[J]. Front Cardiovasc Med, 2022, 8: 806988. [24] DING Y N, WANG T T, LV S J, et al. SIRT6 is an epigenetic repressor of thoracic aortic aneurysms via inhibiting inflammation and senescence[J]. Signal Transduct Target Ther, 2023, 8(1): 255. [25] YANG Z, HUANG Y, ZHU L, et al. SIRT6 promotes angiogenesis and hemorrhage of carotid plaque via regulating HIF-1α and reactive oxygen species[J]. Cell Death Dis, 2021, 12(1): 77. [26] XIONG J, MA F, DING N, et al. miR-195-3p alleviates homocysteine-mediated atherosclerosis by targeting IL-31 through its epigenetics modifications[J]. Aging Cell, 2021, 20(10): e13485. [27] NGUBO M, CHEN Z, MCDONALD D, et al. Progeria-based vascular model identifies networks associated with cardiovascular aging and disease[J]. Aging Cell, 2024, 23(7): e14150. [28] LEE G H, HOANG T H, JUNG E S, et al. Anthocyanins attenuate endothelial dysfunction through regulation of uncoupling of nitric oxide synthase in aged rats[J]. Aging Cell, 2020, 19(12): e13279. [29] DI TOMO P, ALESSIO N, FALONE S, et al. Endothelial cells from umbilical cord of women affected by gestational diabetes: a suitable in vitro model to study mechanisms of early vascular senescence in diabetes[J]. FASEB J, 2021, 35(6): e21662. [30] FURUKAWA A, TADA-OIKAWA S, KAWANISHI S, et al. H2O2 accelerates cellular senescence by accumulation of acetylated p53 via decrease in the function of SIRT1 by NAD+ depletion[J]. Cell Physiol Biochem, 2007, 20(1/2/3/4): 45-54. [31] YAN P, LI Z, XIONG J, et al. LARP7 ameliorates cellular senescence and aging by allosterically enhancing SIRT1 deacetylase activity[J]. Cell Rep, 2021, 37(8): 110038. [32] CHEN Y X, YANG H, WANG D S, et al. Gastrodin alleviates mitochondrial dysfunction by regulating SIRT3-mediated TFAM acetylation in vascular dementia[J]. Phytomedicine, 2024, 128: 155369. [33] WU Y, TANG L, HUANG H, et al. Phosphoglycerate dehydrogenase activates PKM2 to phosphorylate histone H3T11 and attenuate cellular senescence[J]. Nat Commun, 2023, 14(1): 1323. [34] HU J, LEISEGANG M S, LOOSO M, et al. Disrupted binding of cystathionine γ-lyase to p53 promotes endothelial senescence[J]. Circ Res, 2023, 133(10): 842-857. [35] CAO X, WU Y, HONG H, et al. Sirtuin 3 dependent and independent effects of NAD+ to suppress vascular inflammation and improve endothelial function in mice[J]. Antioxidants, 2022, 11(4): 706. [36] PEI Z, DONG M, MENG X, et al. Effects of nicotinamide adenine dinucleotide on older patients with heart failure[J]. Rev Cardiovasc Med, 2024, 25(8): 297. [37] REN S C, CHEN X, GONG H, et al. SIRT6 in vascular diseases, from bench to bedside[J]. Aging Dis, 2022, 13(4): 1015-1029. [38] ZHONG W, YANG Y, WANG Y. Liraglutide attenuates high glucose-induced endothelial cell senescence and dysfunction via SIRT1-mediated deacetylation of p53/p65[J]. Tissue Cell, 2025, 95: 102882. |