[1] HARDIMAN O, AL-CHALABI A, CHIO A, et al. Amyotrophic lateral sclerosis[J]. Nat Rev Dis Primers, 2017, 3: 17085. [2] BROWN R H, AL-CHALABI A. Amyotrophic lateral sclerosis[J]. N Engl J Med, 2017, 377(2): 162-172. [3] XU L, LIU T, LIU L, et al. Global variation in prevalence and incidence of amyotrophic lateral sclerosis: a systematic review and meta-analysis[J]. J Neurol, 2020,267(4): 944-953. [4] MEAD R J, SHAN N, REISER H J, et al. Amyotrophic lateral sclerosis: a neurodegenerative disorder poised for successful therapeutic translation[J]. Nat Rev Drug Discov, 2023, 22(3): 185-212. [5] FELDMAN E L, GOUTMAN S A, PETRI S, et al. Amyotrophic lateral sclerosis[J]. Lancet, 2022, 400(10360): 1363-1380. [6] VIDOVIC M, MÜSCHEN L H, BRAKEMEIER S, et al. Current state and future directions in the diagnosis of amyotrophic lateral sclerosis[J]. Cells, 2023, 12(5): 736. [7] GOUTMAN S A, HARDIMAN O, AL-CHALABI A, et al. Recent advances in the diagnosis and prognosis of amyotrophic lateral sclerosis[J]. Lancet Neurol, 2022, 21(5): 480-493. [8] 中华医学会神经病学分会肌萎缩侧索硬化协作组. 肌萎缩侧索硬化诊断和治疗中国专家共识2022[J]. 中华神经科杂志, 2022, 55(6): 581-588. [9] IRWIN K E, SHETH U, WONG P C, et al. Fluid biomarkers for amyotrophic lateral sclerosis: a review[J]. Mol Neurodegener, 2024, 19(1): 9. [10] MCMACKIN R, BEDE P, INGRE C, et al. Biomarkers in amyotrophic lateral sclerosis: current status and future prospects[J]. Nat Rev Neurol, 2023, 19(12): 754-768. [11] YUAN A, RAOM V, VEERANNA, et al. Neurofilaments and neurofilament proteins in health and disease[J]. Cold Spring Harb Perspect Biol, 2017, 9(4): a018309. [12] BENATAR M, WUU J, ANDERSEN P M, et al. Neurofilament light: a candidate biomarker of presymptomatic amyotrophic lateral sclerosis and phenoconversion[J]. Ann Neurol, 2018, 84(1): 130-139. [13] BENATAR M, WUU J, LOMBARDI V, et al. Neurofilaments in pre-symptomatic ALS and the impact of genotype[J]. Amyotroph Lateral Scler Frontotemporal Degener, 2019, 20(7/8): 538-548. [14] MA J, WEN Q, PANG X, et al. Fasciculation score: a sensitive biomarker in amyotrophic lateral sclerosis[J]. Neurol Sci, 2021, 42(11): 4657-4666. [15] RAJULA R R, SAINI J, UNNIKRISHNAN G, et al. Muscle ultrasonography in detecting fasciculations: a noninvasive diagnostic tool for amyotrophic lateral sclerosis[J]. J Clin Ultrasound, 2022, 50(2): 286-291. [16] STIKVOORT GARCÍA D J L, SLEUTJES B T H M, VAN SCHELVEN L J,et al. Diagnostic accuracy of nerve excitability and compound muscle action potential scan derived biomarkers in amyotrophic lateral sclerosis[J]. Eur J Neurol, 2023, 30(10): 3068-3078. [17] BENSIMON G, LACOMBLEZ L, MEININGER V. A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group[J]. N Engl J Med, 1994, 330(9): 585-591. [18] PALUMBO J M, HUBBLE J, APPLE S, et al. Post-hoc analyses of the edaravone clinical trials study 16 and study 19: a step toward more efficient clinical trial designs in amyotrophic lateral sclerosis[J]. Amyotroph Lateral Scler Frontotemporal Degener, 2019, 20(5/6): 421-431. [19] ALQALLAF A, CATES D W, RENDER K P, et al. Sodium phenylbutyrate and taurursodiol: a new therapeutic option for the treatment of amyotrophic lateral sclerosis[J]. Ann Pharmacother, 2024, 58(2): 165-173. [20] KRAFT S, MEASE C, JILLAPALLI D, et al. Trends in drug development for amyotrophic lateral sclerosis[J]. Nat Rev Drug Discov,2024, 23:99-100. [21] YAZDANI S, SEITZ C, CUI C, et al. T cell responses at diagnosis of amyotrophic lateral sclerosis predict disease progression[J]. Nat Commun, 2022, 13(1): 6733. [22] MANDRIOLI J, D'AMICO R, ZUCCHI E, et al. Randomized, double-blind, placebo-controlled trial of rapamycin in amyotrophic lateral sclerosis[J]. Nat Commun, 2023, 14(1): 4970. [23] TANG Q, ADAMS J Y, PENARANDA C, et al. Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction[J]. Immunity, 2008, 28(5): 687-697. [24] CAMU W, MICKUNAS M, VEYRUNE J L, et al. Repeated 5-day cycles of low dose aldesleukin in amyotrophic lateral sclerosis(IMODALS): a phase 2a randomised, double-blind, placebo-controlled trial[J]. EBioMedicine, 2020, 59: 102844. [25] GIOVANNELLI I, BAYATTI N, BROWN A, et al. Amyotrophic lateral sclerosis transcriptomics reveals immunological effects of low-dose interleukin-2[J]. Brain Commun, 2021, 3(3): fcab141. [26] GENGE A, VANDEN BERG L H, FRICK G, et al. Efficacy and safety of ravulizumab, a complement C5 inhibitor, in adults with amyotrophic lateral sclerosis: arandomized clinical trial[J]. JAMA Neurol, 2023, 80(10): 1089-1097. [27] RENTON A E, CHIÒ A, TRAYNOR B J. State of play in amyotrophic lateral sclerosis genetics[J]. Nat Neurosci, 2014, 17(1): 17-23. [28] TANG R, XU Z. Gene therapy: a double-edged sword with great powers[J]. Mol Cell Biochem, 2020, 474(1/2): 73-81. [29] VAN DAELE S H, MASRORI P, VAN DAMME P, et al. The sense of antisense therapies in ALS[J]. Trends Mol Med, 2024,30(3):252-262. [30] JIN J, ZHONG X B. ASO drug Qalsody(tofersen) targets amyotrophic lateral sclerosis[J]. Trends Pharmacol Sci, 2023, 44(12): 1043-1044. [31] MILLER T, CUDKOWICZ M, SHAWP J, et al. Phase 1-2 trial of antisense oligonucleotide tofersen for SOD1 ALS[J]. N Engl J Med, 2020, 383(2): 109-119. [32] MILLER T M, CUDKOWICZ M E, GENGE A, et al. Trial of antisense oligonucleotide tofersen for SOD1 ALS[J]. N Engl J Med, 2022, 387(12): 1099-1110. [33] TRAN H, MOAZAMI M P, YANG H, et al. Suppression of mutant C9orf72 expression by a potent mixed backbone antisense oligonucleotide[J]. Nat Med, 2022, 28(1): 117-124. [34] KOROBEYNIKOV V A, LYASHCHENKO A K, BLANCO-REDONDO B, et al. Antisense oligonucleotide silencing of FUS expression as a therapeutic approach in amyotrophic lateral sclerosis[J]. Nat Med, 2022, 28(1): 104-116. [35] IGAZ L M, KWONG L K, LEE E B, et al. Dysregulation of the ALS-associated gene TDP-43 leads to neuronal death and degeneration in mice[J]. J Clin Invest, 2011, 121(2): 726-738. [36] BECKER L A, HUANG B, BIERI G, et al. Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice[J]. Nature, 2017, 544(7650): 367-371. [37] WANG L J, LU Y Y, MURAMATSU S I, et al. Neuroprotective effects of glial cell line-derived neurotrophic factor mediated by an adeno-associated virus vector in a transgenic animal model of amyotrophic lateral sclerosis[J]. J Neurosci, 2002, 22(16): 6920-6928. [38] MÒDOL-CABALLERO G, GARCÍA-LAREU B, HERRANDO-GRABULOSA M, et al. Specific expression of glial-derived neurotrophic factor in muscles as gene therapy strategy for amyotrophic lateral sclerosis[J]. Neurotherapeutics, 2021, 18(2): 1113-1126. [39] KASPAR B K, LLADÓ J, SHERKAT N, et al. Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model[J]. Science, 2003, 301(5634): 839-842. [40] BERRY J D, CUDKOWICZ M E, WINDEBANK A J, et al. NurOwn, phase 2, randomized, clinical trial in patients with ALS: safety, clinical, and biomarker results[J]. Neurology, 2019, 93(24): e2294-e2305. [41] CUDKOWICZ M E, LINDBORG S R, GOYAL N A, et al. A randomized placebo-controlled phase 3 study of mesenchymal stem cells induced to secrete high levels of neurotrophic factors in amyotrophic lateral sclerosis[J]. Muscle Nerve, 2022, 65(3): 291-302. [42] BALOH R H, JOHNSON J P, AVALOS P, et al. Transplantation of human neural progenitor cells secreting GDNF into the spinal cord of patients with ALS: a phase 1/2a trial[J]. Nat Med, 2022, 28(9): 1813-1822. [43] MORIMOTO S, TAKAHASHI S, ITO D, et al. Phase 1/2a clinical trial in ALS with ropinirole, a drug candidate identified by iPSC drug discovery[J]. Cell Stem Cell, 2023, 30(6): 766-780.e9. |