[1] CAMPBELL B, KHATRI P. Stroke[J]. Lancet, 2020, 396(10244):129-142. [2] MOSCONI M G, PACIARONI M. Treatments in ischemic stroke: current and future[J]. Eur Neurol, 2022, 85(5):349-366. [3] JAFARZADEH-ESFEHANI R, SOUDYAB M, PARIZADEH S M, et al. Circulating exosomes and their role in stroke[J]. Curr Drug Targets, 2020, 21(1):89-95. [4] SAINT-POL J, GOSSELET F, DUBAN-DEWEER S, et al. Targeting and crossing the blood-brain barrier with extracellular vesicles[J]. Cells, 2020, 9(4):851. [5] YU D, LI Y, WANG M, et al. Exosomes as a new frontier of cancer liquid biopsy[J]. Mol Cancer, 2022, 21(1):56. [6] RASTOGI S, SHARMA V, BHARTI P S, et al. The evolving landscape of exosomes in neurodegenerative diseases: exosomes characteristics and a promising role in early diagnosis[J]. Int J Mol Sci, 2021, 22(1):440. [7] KALLURI R, LEBLEU V S. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478):eaau6977. [8] PAN B T, JOHNSTONE R M. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor[J]. Cell, 1983, 33(3):967-978. [9] JOHNSTONE R M, ADAM M, HAMMOND J R, et al. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes)[J]. J Biol Chem, 1987, 262(19):9412-9420. [10] GURUNATHAN S, KANG M H, KIM J H. A comprehensive review on factors influences biogenesis, functions, therapeutic and clinical implications of exosomes[J]. Int J Nanomedicine, 2021, 16:1281-1312. [11] TENG F, FUSSENEGGER M. Shedding light on extracellular vesicle biogenesis and bioengineering[J]. Adv Sci: Weinh, 2020, 8(1):2003505. [12] KUGERATSKI F G, HODGE K, LILLA S, et al. Quantitative proteomics identifies the core proteome of exosomes with syntenin-1 as the highest abundant protein and a putative universal biomarker[J]. Nat Cell Biol, 2021, 23(6):631-641. [13] DONOSO-QUEZADA J, AYALA-MAR S, GONZÁLEZ-VALDEZ J. The role of lipids in exosome biology and intercellular communication: function, analytics and applications[J]. Traffic, 2021, 22(7):204-220. [14] CHOI E Y, NIEVES G A, JONES D E. Acute stroke diagnosis[J]. Am Fam Physician, 2022, 105(6):616-624. [15] LIU Y, LI Y, ZANG J, et al. CircOGDH is a penumbra biomarker and therapeutic target in acute ischemic stroke[J]. Circ Res, 2022, 130(6):907-924. [16] LI S, HU W, DENG F, et al. Identification of circular RNA hsa_circ_0001599 as a novel biomarker for large-artery atherosclerotic stroke[J]. DNA Cell Biol, 2021, 40(3):457-468. [17] CHEN Y, WANG B, LIU W, et al. Diagnostic value of serum hsa_circ_0141720 in patients with acute ischemic stroke[J]. Clin Lab, 2020, 66(8):191266. [18] YANG J, HAO J, LIN Y, et al. Profile and functional prediction of plasma exosome-derived circRNAs from acute ischemic stroke patients[J]. Front Genet, 2022, 13:810974. [19] WANG Q, WANG F, FU F, et al. Diagnostic and prognostic value of serum miR-9-5p and miR-128-3p levels in early-stage acute ischemic stroke[J]. Clinics: Sao Paulo, 2021, 76:e2958. [20] WANG S, JUN J, CONG L, et al. MiR-328-3p, a predictor of stroke, aggravates the cerebral ischemia-reperfusion injury[J]. Int J Gen Med, 2021, 14:2367-2376. [21] QI Z, ZHAO Y, SU Y, et al. Serum extracellular vesicle-derived miR-124-3p as a diagnostic and predictive marker for early-stage acute ischemic stroke[J]. Front Mol Biosci, 2021, 8:685088. [22] ZHANG Y, LIAN L, FU R, et al. Microglia: the hub of intercellular communication in ischemic stroke[J]. Front Cell Neurosci, 2022, 16:889442. [23] YANG H, TU Z, YANG D, et al. Exosomes from hypoxic pre-treated ADSCs attenuate acute ischemic stroke-induced brain injury via delivery of circ-Rps5 and promote M2 microglia/macrophage polarization[J]. Neurosci Lett, 2022, 769:136389. [24] LIU X, ZHANG M, LIU H, et al. Bone marrow mesenchymal stem cell-derived exosomes attenuate cerebral ischemia-reperfusion injury-induced neuroinflammation and pyroptosis by modulating microglia M1/M2 phenotypes[J]. Exp Neurol, 2021, 341:113700. [25] LONG X, YAO X, JIANG Q, et al. Astrocyte-derived exosomes enriched with miR-873a-5p inhibit neuroinflammation via microglia phenotype modulation after traumatic brain injury[J]. J Neuroinflammation, 2020, 17(1):89. [26] WANG C, BÖRGER V, MOHAMUD YUSUF A, et al. Postischemic neuroprotection associated with anti-inflammatory effects by mesenchymal stromal cell-derived small extracellular vesicles in aged mice[J]. Stroke, 2022, 53(1):e14-e18. [27] DOJO SOEANDY C, ELIA A J, CAO Y, et al. Necroptotic-apoptotic regulation in an endothelin-1 model of cerebral ischemia[J]. Cell Mol Neurobiol, 2021, 41(8):1727-1742. [28] HUANGL Y, SONG J X, CAI H, et al. Healthy serum-derived exosomes improve neurological outcomes and protect blood-brain barrier by inhibiting endothelial cell apoptosis and reversing autophagy-mediated tight junction protein reduction in rat stroke model[J]. Front Cell Neurosci, 2022, 16:841544. [29] ZHANG Y, LIU J, SU M, et al. Exosomal microRNA-22-3p alleviates cerebral ischemic injury by modulating KDM6B/BMP2/BMF axis[J]. Stem Cell Res Ther, 2021, 12(1):111. [30] WANG J, LIU H, CHEN S, et al. Moderate exercise has beneficial effects on mouse ischemic stroke by enhancing the functions of circulating endothelial progenitor cell-derived exosomes[J]. Exp Neurol, 2020, 330:113325. [31] LUO H, YE G, LIU Y, et al. miR-150-3p enhances neuroprotective effects of neural stem cell exosomes after hypoxic-ischemic brain injury by targeting CASP2[J]. Neurosci Lett, 2022, 779:136635. [32] WEI R, ZHANG L, HU W, et al. Zeb2/Axin2-enriched BMSC-derived exosomes promote post-stroke functional recovery by enhancing neurogenesis and neural plasticity[J]. J Mol Neurosci, 2022, 72(1):69-81. [33] XIN H, LIU Z, BULLER B, et al. MiR-17-92 enriched exosomes derived from multipotent mesenchymal stromal cells enhance axon-myelin remodeling and motor electrophysiological recovery after stroke[J]. J Cereb Blood Flow Metab, 2021, 41(5):1131-1144. [34] XIAO R, WANG Q, PENG J, et al. BMSC-derived exosomal Egr2 ameliorates ischemic stroke by directly upregulating SIRT6 to suppress Notch signaling[J]. Mol Neurobiol, 2023, 60(1):1-17. [35] YE Y C, CHANG Z H, WANG P, et al. Infarct-preconditioning exosomes of umbilical cord mesenchymal stem cells promoted vascular remodeling and neurological recovery after stroke in rats[J]. Stem Cell Res Ther, 2022, 13(1):378. [36] XU C, YU H, CHEN B, et al. Serum exosomal mir-340-5p promotes angiogenesis in brain microvascular endothelial cells during oxygen-glucose deprivation[J]. Neurochem Res, 2022, 47(4):907-920. [37] HU H, HU X, LI L, et al. Exosomes derived from bone marrow mesenchymal stem cells promote angiogenesis in ischemic stroke mice via upregulation of miR-21-5p[J]. Biomolecules, 2022, 12(7):883. [38] TIAN T, CAO L, HE C, et al. Targeted delivery of neural progenitor cell-derived extracellular vesicles for anti-inflammation after cerebral ischemia[J]. Theranostics, 2021, 11(13):6507-6521. [39] ZHANG H, WU J, WU J H, et al. Exosome-mediated targeted delivery of miR-210 for angiogenic therapy after cerebral ischemia in mice[J]. J Nanobiotechnology, 2019, 17(1):29. [40] XU S Y, ZENG C L, NI S M, et al. The angiogenesis effects of electro-acupuncture treatment via exosomal miR-210 in cerebral ischemia-reperfusion rats[J]. Curr Neurovasc Res, 2022, 19(1):61-72. |