[1] VON LEDEN R E, YAUGER Y J, KHAYRULLINA G, et al. Central nervous system injury and nicotinamide adenine dinucleotide phosphate oxidase: oxidative stress and therapeutic targets[J]. J Neurotrauma, 2017, 34(4):755-764. [2] TRAN A P, WARREN P M, SILVER J. The biology of regeneration failure and success after spinal cord injury[J]. Physiol Rev, 2018, 98(2):881-917. [3] NAKAMURA M, OKANO H. Cell transplantation therapies for spinal cord injury focusing on induced pluripotent stem cells[J]. Cell Res, 2013, 23(1):70-80. [4] BAREYRE F M, SCHWAB M E. Inflammation, degeneration and regeneration in the injured spinal cord: insights from DNA microarrays[J]. Trends Neurosci, 2003, 26(10):555-563. [5] DI GIOVANNI S, KNOBLACH S M, BRANDOLI C, et al. Gene profiling in spinal cord injury shows role of cell cycle in neuronal death[J]. Ann Neurol, 2003, 53(4):454-468. [6] PAN J Z, NI L, SODHI A, et al. Cytokine activity contributes to induction of inflammatory cytokine mRNAs in spinal cord following contusion[J]. J Neurosci Res, 2002, 68(3):315-322. [7] YIP P K, MALASPINA A. Spinal cord trauma and the molecular point of no return[J]. Mol Neurodegener, 2012, 7:6. [8] KALLURI R, LEBLEU V S. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478):eaau6977. [9] WEN S W, LIMA L G, LOBB R J, et al. Breast cancer-derived exosomes reflect the cell-of-origin phenotype[J]. Proteomics, 2019, 19(8):e1800180. [10] MASHOURI L, YOUSEFI H, AREF A R, et al. Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance[J]. Mol Cancer, 2019, 18(1):75. [11] WANG Y T, SHI T, SRIVASTAVA S, et al. Proteomic analysis of exosomes for discovery of protein biomarkers for prostate and bladder cancer[J]. Cancers: Basel, 2020, 12(9):2335. [12] CHENG L, SHARPLES R A, SCICLUNA B J, et al. Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood[J]. J Extracell Vesicles, 2014.DOI: 10.3402/jev.v3.23743. [13] SHINOZAKI M, NAGOSHI N, NAKAMURA M, et al. Mechanisms of stem cell therapy in spinal cord injuries[J]. Cells, 2021, 10(10):2676. [14] XU S, LU J, SHAO A, et al. Glial cells: role of the immune response in ischemic stroke[J]. Front Immunol, 2020, 11:294. [15] SUN G, LI G, LI D, et al. hucMSC derived exosomes promote functional recovery in spinal cord injury mice via attenuating inflammation[J]. Mater Sci Eng C Mater Biol Appl, 2018, 89:194-204. [16] LIDDELOW S A, GUTTENPLAN K A, CLARKE L E, et al. Neurotoxic reactive astrocytes are induced by activated microglia[J]. Nature, 2017, 541(7638):481-487. [17] 周燕,王琳,裴双, 等. 骨髓间充质干细胞外泌体可减少脊髓损伤后A1型星形胶质细胞的活化[J].中国组织工程研究,2019,23(21):3294-3301. [18] WU X, JIN S, DING C, et al. Mesenchymal stem cell-derived exosome therapy of microbial diseases: from bench to bed[J]. Front Microbiol, 2022, 12:804813. [19] SCHWARTZ M, YOLES E. Immune-based therapy for spinal cord repair: autologous macrophages and beyond[J]. J Neurotrauma, 2006, 23(3/4):360-370. [20] HU W, SONG X, YU H, et al. Released exosomes contribute to the immune modulation of cord blood-derived stem cells[J]. Front Immunol, 2020, 11:165. [21] YAZDANI M, GHOLIZADEH Z, NIKPOOR A R, et al. Vaccination with dendritic cells pulsed ex vivo with gp100 peptide-decorated liposomes enhances the efficacy of anti PD-1 therapy in a mouse model of melanoma[J]. Vaccine, 2020, 38(35):5665-5677. [22] WANG Y, WANG K, CHAO R, et al. Neuroprotective effect of vaccination with autoantigen-pulsed dendritic cells after spinal cord injury[J]. J Surg Res, 2012, 176(1):281-292. [23] YAGUCHI M, TABUSE M, OHTA S, et al. Transplantation of dendritic cells promotes functional recovery from spinal cord injury in common marmoset[J]. Neurosci Res, 2009, 65(4):384-392. [24] GUAY C, KRUIT J K, ROME S, et al. Lymphocyte-derived exosomal microRNAs promote pancreatic β cell death and may contribute to type 1 diabetes development[J]. Cell Metab, 2019, 29(2):348-361.e6. [25] REN X, AKIYOSHI K, DZIENNIS S, et al. Regulatory B cells limit CNS inflammation and neurologic deficits in murine experimental stroke[J]. J Neurosci, 2011, 31(23):8556-8563. [26] LI D, ZHANG P, YAO X, et al. Exosomes derived from miR-133b-modified mesenchymal stem cells promote recovery after spinal cord injury[J]. Front Neurosci, 2018, 12:845. [27] GUO S, PERETS N, BETZER O, et al. Intranasal delivery of mesenchymal stem cell derived exosomes loaded with phosphatase and tensin homolog siRNA repairs complete spinal cord injury[J]. ACS Nano, 2019,13(9):10015-10028. [28] LI L, MU J, ZHANG Y, et al. Stimulation by exosomes from hypoxia preconditioned human umbilical vein endothelial cells facilitates mesenchymal stem cells angiogenic function for spinal cord repair[J]. ACS Nano, 2022, 16(7):10811-10823. |