[1] FELDMAN E L, GOUTMAN S A, PETRI S, et al. Amyotrophic lateral sclerosis[J]. Lancet, 2022,400(10360):1363-1380. [2] LE GALL L, ANAKOR E, CONNOLLY O, et al. Molecular and cellular mechanisms affected in ALS[J]. J Pers Med, 2020,10(3):101. [3] KALLURI R, LEBLEU V S. The biology, function, and biomedical applications of exosomes[J]. Science, 2020,367(6478):eaau6977. [4] JOHNSTONE R M, ADAM M, HAMMOND J R, et al. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes)[J]. J Biol Chem, 1987, 262(19):9412-9420. [5] SIMPSON R J, JENSEN S S, LIM J W. Proteomic profiling of exosomes: current perspectives[J]. Proteomics, 2008,8(19):4083-4099. [6] BUDNIK V, RUIZ-CAÑADA C, WENDLER F. Extracellular vesicles round off communication in the nervous system[J]. Nat Rev Neurosci, 2016, 17(3):160-172. [7] HOWITT J, HILL A F. Exosomes in the pathology of neurodegenerative diseases[J]. J Biol Chem, 2016,291(52):26589-26597. [8] CICARDI M E, MARRONE L, AZZOUZ M, et al. Proteostatic imbalance and protein spreading in amyotrophic lateral sclerosis[J]. EMBO J, 2021, 40(10):e106389. [9] CHEN Q Y, WEN T, WU P, et al. Exosomal proteins and miRNAs as mediators of amyotrophic lateral sclerosis[J]. Front Cell Dev Biol, 2021, 9:718803. [10] CLEMENT A M, NGUYEN M D, ROBERTS E A, et al. Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice[J]. Science, 2003, 302(5642):113-117. [11] ROTUNNO M S, BOSCO D A. An emerging role for misfolded wild-type SOD1 in sporadic ALS pathogenesis[J]. Front Cell Neurosci, 2013, 7:253. [12] GOMES C, KELLER S, ALTEVOGT P, et al. Evidence for secretion of Cu,Zn superoxide dismutase via exosomes from a cell model of amyotrophic lateral sclerosis[J]. Neurosci Lett, 2007, 428(1):43-46. [13] BASSO M, POZZI S, TORTAROLO M, et al. Mutant copper-zinc superoxide dismutase (SOD1) induces protein secretion pathway alterations and exosome release in astrocytes: implications for disease spreading and motor neuron pathology in amyotrophic lateral sclerosis[J]. J Biol Chem, 2013,288(22):15699-15711. [14] GRAD L I, YERBURY J J, TURNER B J, et al. Intercellular propagated misfolding of wild-type Cu/Zn superoxide dismutase occurs via exosome-dependent and -independent mechanisms[J]. Proc Natl Acad Sci U S A, 2014,111(9):3620-3625. [15] SILVERMAN J M, FERNANDO S M, GRAD L I, et al. Disease mechanisms in ALS: misfolded SOD1 transferred through exosome-dependent and exosome-independent pathways[J]. Cell Mol Neurobiol, 2016, 36(3):377-381. [16] MASSENZIO F, PEÑA-ALTAMIRA E, PETRALLA S, et al. Microglial overexpression of fALS-linked mutant SOD1 induces SOD1 processing impairment, activation and neurotoxicity and is counteracted by the autophagy inducer trehalose[J]. Biochim Biophys Acta Mol Basis Dis, 2018,1864(12):3771-3785. [17] NEUMANN M, SAMPATHU D M, KWONG L K, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis[J]. Science, 2006,314(5796):130-133. [18] NONAKA T, MASUDA-SUZUKAKE M, ARAI T, et al. Prion-like properties of pathological TDP-43 aggregates from diseased brains[J]. Cell Rep, 2013, 4(1):124-134. [19] IGUCHI Y, EID L, PARENT M, et al. Exosome secretion is a key pathway for clearance of pathological TDP-43[J]. Brain, 2016, 139(Pt 12):3187-3201. [20] HOSAKA T, YAMASHITA T, TAMAOKA A, et al. Extracellular RNAs as biomarkers of sporadic amyotrophic lateral sclerosis and other neurodegenerative diseases[J]. Int J Mol Sci, 2019, 20(13):3148. [21] BOILLÉE S, YAMANAKA K, LOBSIGER C S, et al. Onset and progression in inherited ALS determined by motor neurons and microglia[J]. Science, 2006,312(5778):1389-1392. [22] CARDOSO A L, GUEDES J R, DE LIMA M C. Role of microRNAs in the regulation of innate immune cells under neuroinflammatory conditions[J]. Curr Opin Pharmacol, 2016,26:1-9. [23] PINTO S, CUNHA C, BARBOSA M, et al. Exosomes from NSC-34 cells transfected with hSOD1-G93A are enriched in miR-124 and drive alterations in microglia phenotype[J]. Front Neurosci, 2017,11:273. [24] VAZ A R, PINTO S, EZEQUIEL C, et al. Phenotypic effects of wild-type and mutant SOD1 expression in N9 murine microglia at steady state, inflammatory and immunomodulatory conditions[J]. Front Cell Neurosci, 2019, 13:109. [25] ANAKOR E, MILLA V, CONNOLLY O, et al. The neurotoxicity of vesicles secreted by ALS patient myotubes is specific to exosome-like and not larger subtypes[J]. Cells, 2022,11(5):845. [26] ZONDLER L, FEILER M S, FREISCHMIDT A, et al. Impaired activation of ALS monocytes by exosomes[J]. Immunol Cell Biol, 2017, 95(2):207-214. [27] BANG C, THUM T. Exosomes: new players in cell-cell communication[J]. Int J Biochem Cell Biol, 2012, 44(11):2060-2064. [28] HAYASHI N, DOI H, KURATA Y, et al. Proteomic analysis of exosome-enriched fractions derived from cerebrospinal fluid of amyotrophic lateral sclerosis patients[J]. Neurosci Res, 2020, 160:43-49. [29] CHEN Y, XIA K, CHEN L, et al. Increased interleukin-6 levels in the astrocyte-derived exosomes of sporadic amyotrophic lateral sclerosis patients[J]. Front Neurosci, 2019,13:574. [30] CHEN P C, WU D, HU C J, et al. Exosomal TAR DNA-binding protein-43 and neurofilaments in plasma of amyotrophic lateral sclerosis patients: a longitudinal follow-up study[J]. J Neurol Sci, 2020, 418:117070. [31] XU Q, ZHAO Y, ZHOU X, et al. Comparison of the extraction and determination of serum exosome and miRNA in serum and the detection of miR-27a-3p in serum exosome of ALS patients[J]. Intractable Rare Dis Res, 2018,7(1):13-18. [32] MEN Y, YELICK J, JIN S, et al. Exosome reporter mice reveal the involvement of exosomes in mediating neuron to astroglia communication in the CNS[J]. Nat Commun, 2019,10(1):4136. [33] YELICK J, MEN Y, JIN S, et al. Elevated exosomal secretion of miR-124-3p from spinal neurons positively associates with disease severity in ALS[J]. Exp Neurol, 2020,333:113414. [34] SAUCIER D, WAJNBERG G, ROY J, et al. Identification of a circulating miRNA signature in extracellular vesicles collected from amyotrophic lateral sclerosis patients[J]. Brain Res, 2019, 1708:100-108. [35] KATSU M, HAMA Y, UTSUMI J, et al. MicroRNA expression profiles of neuron-derived extracellular vesicles in plasma from patients with amyotrophic lateral sclerosis[J]. Neurosci Lett, 2019, 708:134176. [36] BONAFEDE R, SCAMBI I, PERONI D, et al. Exosome derived from murine adipose-derived stromal cells: neuroprotective effect on in vitro model of amyotrophic lateral sclerosis[J]. Exp Cell Res, 2016, 340(1):150-158. [37] BONAFEDE R, BRANDI J, MANFREDI M, et al. The anti-apoptotic effect of ASC-exosomes in an in vitro ALS model and their proteomic analysis[J]. Cells, 2019,8(9):1087. [38] LEE M, BAN J J, KIM K Y, et al. Adipose-derived stem cell exosomes alleviate pathology of amyotrophic lateral sclerosis invitro[J]. Biochem Biophys Res Commun, 2016, 479(3):434-439. [39] CALABRIA E, SCAMBI I, BONAFEDE R, et al. ASCs-exosomes recover coupling efficiency and mitochondrial membrane potential in an in vitro model of ALS[J]. Front Neurosci, 2019, 13:1070. [40] BONAFEDE R, TURANO E, SCAMBI I, et al. ASC-exosomes ameliorate the disease progression in SOD1(G93A) murine model underlining their potential therapeutic use in human ALS[J]. Int J Mol Sci, 2020, 21(10):3651. |