实用老年医学 ›› 2021, Vol. 35 ›› Issue (4): 405-409.doi: 10.3969/j.issn.1003-9198.2021.04.023
马微波, 刘悦文, 于莹, 郭琪
发布日期:
2021-04-25
通讯作者:
于莹,Email: yuying@sumhs.edu.cn
基金资助:
Published:
2021-04-25
中图分类号:
马微波, 刘悦文, 于莹, 郭琪. 高热量饮食诱导的肠道菌群失调与认知功能障碍关系的研究进展[J]. 实用老年医学, 2021, 35(4): 405-409.
[1] 贾建军. 老年认知功能障碍的筛查与诊断[J]. 中华老年心脑血管病杂志, 2016,18(4):337-338. [2] RODRIGUEZ-SANCHEZ E, MORA-SIMON S, PATINO-ALONSO M C, et al. Prevalence of cognitive impairment in individuals aged over 65 in an urban area: DERIVA study[J]. BMC Neurol, 2011, 11:147. [3] WIMO A, WINBLAD B, JONSSON L. An estimate of the total worldwide societal costs of dementia in 2005[J]. Alzheimers Dement, 2007,3(2):81-91. [4] PROCTOR C, THIENNIMITR P, CHATTIPAKORN N, et al. Diet, gut microbiota and cognition[J]. Metab Brain Dis, 2017,32(1):1-17. [5] HWANG J, JEONG J H, YOON S J, et al. Clinical and biomarker characteristics according to clinical spectrum of Alzheimer’s disease (AD) in the validation cohort of Korean brain aging study for the early diagnosis and prediction of AD[J]. J Clin Med, 2019, 8(3):341-359. [6] 贾建军. 2018中国痴呆与认知障碍诊治指南(三):痴呆的认知和功能评估[J]. 中华医学杂志, 2018,98(15):1125-1129. [7] OHIRA H, TSUTSUI W, FUJIOKA Y. Are short chain fatty acids in gut microbiota defensive players for inflammation and atherosclerosis?[J]. J Atheroscler Thromb, 2017, 24(7):660-672. [8] MARIAT D, FIRMESSE O, LEVENEZ F, et al. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age[J]. BMC Microbiol, 2009, 9:123. [9] FAVA F, GITAU R, GRIFFIN B A, et al. The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome ‘at-risk’ population[J]. Int J Obes: Lond, 2013,37(2):216-223. [10] DAVID L A, MAURICE C F, CARMODY R N, et al. Diet rapidly and reproducibly alters the human gut microbiome[J]. Nature, 2014, 505(7484):559-563. [11] BACKHED F, DING H, WANG T, et al. The gut microbiota as an environmental factor that regulates fat storage[J]. Proc Natl Acad Sci U S A, 2004,101(44):15718-15723. [12] LEONE V, GIBBONS S M, MARTINEZ K, et al. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism[J]. Cell Host Microbe, 2015,17(5):681-689. [13] MARTINEZ-GURYN K, HUBERT N, FRAZIER K, et al. Small intestine microbiota regulate host digestive and absorptive adaptive responses to dietary lipids[J]. Cell Host Microbe, 2018, 23(4):458-469. [14] ANHE F F, BARRA N G, SCHERTZER J D. Glucose alters the symbiotic relationships between gut microbiota and host physiology[J]. Am J Physiol Endocrinol Metab, 2020,318(2):E111-E116. [15] ZEEVI D, KOREM T, ZMORA N, et al. Personalized nutrition by prediction of glycemic responses[J]. Cell, 2015,163(5):1079-1094. [16] ORG E, PARKS B W, JOO J W, et al. Genetic and environmental control of host-gut microbiota interactions[J]. Genome Res, 2015, 25(10):1558-1569. [17] BOCARSLY M E, FASOLINO M, KANE G A, et al. Obesity diminishes synaptic markers, alters microglial morphology, and impairs cognitive function[J]. Proc Natl Acad Sci U S A, 2015,112(51):15731-15736. [18] BIESSELS G J, REAGAN L P. Hippocampal insulin resistance and cognitive dysfunction[J]. Nat Rev Neurosci, 2015,16(11):660-671. [19] 马丽娜, 李耘. 胰岛素抵抗与认知功能障碍关系的研究进展[J]. 疑难病杂志, 2014,13(10):1084-1086. [20] SPINELLI M, FUSCO S, GRASSI C. Brain insulin resistance and hippocampal plasticity: Mechanisms and biomarkers of cognitive decline[J]. Front Neurosci, 2019,13:788. [21] AGRAWAL R, NOBLE E, VERGNES L, et al. Dietary fructose aggravates the pathobiology of traumatic brain injury by influencing energy homeostasis and plasticity[J]. J Cereb Blood Flow Metab, 2016,36(5):941-953. [22] LAM Y Y, HA C W, CAMPBELL C R, et al. Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice[J]. PLoS One, 2012,7(3):e34233. [23] 吴孝军, 朱路文, 叶涛, 等. 肠道菌群对中枢神经系统疾病影响的研究进展[J]. 中国康复理论与实践, 2018, 24(5):539-543. [24] CANI P D, BIBILONI R, KNAUF C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice[J]. Diabetes, 2008,57(6):1470-1481. [25] HARGRAVE S L, DAVIDSON T L, ZHENG W, et al. Western diets induce blood-brain barrier leakage and alter spatial strategies in rats[J]. Behav Neurosci, 2016,130(1):123-135. [26] BAJAJ J S, AHLUWALIA V, STEINBERG J L, et al. Elderly patients have an altered gut-brain axis regardless of the presence of cirrhosis[J]. Sci Rep, 2016,6:38481. [27] ARAOS R, ANDREATOS N, UGALDE J, et al. Fecal microbiome among nursing home residents with advanced dementia and clostridium difficile[J]. Dig Dis Sci, 2018,63(6):1525-1531. [28] FAITH J J, GURUGE J L, CHARBONNEAU M, et al. The long-term stability of the human gut microbiota[J]. Science, 2013,341(6141):1237439. [29] ZHAO Y, JABER V, LUKIW W J. Secretory products of the human GI tract microbiome and their potential impact on Alzheimer’s disease (AD): Detection of lipopolysaccharide (LPS) in AD hippocampus[J]. Front Cell Infect Microbiol, 2017,7:318. [30] DAVARI S, TALAEI S A, ALAEI H, et al. Probiotics treatment improves diabetes-induced impairment of synaptic activity and cognitive function: behavioral and electrophysiological proofs for microbiome-gut-brain axis[J]. Neuroscience, 2013, 240:287-296. [31] ATHARI N A S, DJAZAYERI A, SAFA M, et al. Lactobacilli and bifidobacteria ameliorate memory and learning deficits and oxidative stress in beta-amyloid (1-42) injected rats[J]. Appl Physiol Nutr Metab, 2018,43(7):718-726. [32] SUN J, XU J, LING Y, et al. Fecal microbiota transplantation alleviated Alzheimer’s disease-like pathogenesis in APP/PS1 transgenic mice[J]. Transl Psychiatry, 2019,9(1):189. [33] YUAN T, MA H, LIU W, et al. Pomegranate’s neuroprotective effects against alzheimer’s disease are mediated by urolithins, its ellagitannin-gut microbial derived metabolites[J]. ACS Chem Neurosci, 2016,7(1):26-33. |
[1] | 杨存美, 胡亦新, 刘翠娥, 马虹颖, 闫瑾, 徐秋利, 邢丹, 张天一. 社区主观认知下降老年人日常生活活动能力现状及影响因素分析[J]. 实用老年医学, 2024, 38(11): 1110-1115. |
[2] | 孙丽, 尹卫红, 经俊, 钱夏丽. 亚麻醉剂量艾司氯胺酮对老年脊柱手术病人术后早期认知功能障碍的影响[J]. 实用老年医学, 2024, 38(10): 1039-1043. |
[3] | 陈昕露, 周艺铭, 韩雪, 顾小萍. 睡眠障碍与老年术后认知功能障碍的双向关联研究进展[J]. 实用老年医学, 2024, 38(5): 433-437. |
[4] | 蔡文岚, 孙杰. 老年病人术后认知功能障碍的风险因素研究进展[J]. 实用老年医学, 2024, 38(5): 438-437. |
[5] | 赵倩文, 孙斌, 朱杨子, 顾小萍, 王立伟. 老年病人术后认知功能障碍诊断与干预策略的研究进展[J]. 实用老年医学, 2024, 38(5): 447-437. |
[6] | 郭金花, 申铁梅, 陈凌, 崔虹, 王小霞, 黄巧, 黄芳, 李芸, 杨满青. 广东省农村老年人认知功能现状及影响因素分析[J]. 实用老年医学, 2024, 38(5): 456-437. |
[7] | 隗倩, 蔡颖源, 王珊, 谈福云, 陆小伟. 甲状腺功能正常及亚临床甲状腺功能减退的老年人血清促甲状腺激素水平与认知障碍的相关性[J]. 实用老年医学, 2024, 38(5): 486-437. |
[8] | 张卉, 李霞. 痴呆前心理行为障碍预测阿尔茨海默病的研究进展[J]. 实用老年医学, 2024, 38(5): 512-437. |
[9] | 焦琳娜, 李宝仪, 王琴, 何建丽. 脑白质病变及大脑皮层厚度与老年轻型卒中后认知功能障碍的相关性研究[J]. 实用老年医学, 2024, 38(3): 287-290. |
[10] | 董丽华, 李加梅, 郑加平, 雷小晶. 血液生物标志物在阿尔茨海默病早期诊断中的研究进展[J]. 实用老年医学, 2023, 37(12): 1249-1254. |
[11] | 张伟, 王蓉. 衰老作为神经退行性疾病危险因素的科学现状分析[J]. 实用老年医学, 2023, 37(10): 984-988. |
[12] | 时建铨, 郑慧芬, 徐畅, 王变荣. 认知障碍简明评价量表与Addenbrooke认知评估量表Ⅲ诊断阿尔茨海默病的准确性比较[J]. 实用老年医学, 2023, 37(10): 1041-1043. |
[13] | 阎子花, 杜静, 宋竹梅, 张兴梅, 张楠. 痴呆病人病感失认测评工具的研究进展[J]. 实用老年医学, 2023, 37(10): 1059-1063. |
[14] | 王琳琳, 杨诗怡, 徐俊. 人工智能在阿尔茨海默病中的研究进展[J]. 实用老年医学, 2023, 37(9): 869-872. |
[15] | 王敏, 郭文军, 汤忠泉, 赵晓敏, 欧婷, 李云涛. 听力障碍与阿尔茨海默病相关性的Meta分析[J]. 实用老年医学, 2023, 37(9): 915-919. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|