Practical Geriatrics ›› 2023, Vol. 37 ›› Issue (12): 1249-1254.doi: 10.3969/j.issn.1003-9198.2023.12.015
Previous Articles Next Articles
Received:
2023-02-18
Online:
2023-12-20
Published:
2023-12-12
CLC Number:
[1] REN R J, QI J L, LIN S H, et al. The China Alzheimer Report 2022[J]. Gen Psychiatr, 2022, 35(1):e100751. [2] SCHELTENS P, DE STROOPER B, KIVIPELTO M, et al. Alzheimer's disease[J]. Lancet, 2021, 397(10284):1577-1590. [3] JACK C R Jr, BENNETT D A, BLENNOW K, et al. NIA-AA research framework: toward a biological definition of Alzheimer's disease[J]. Alzheimers Dement, 2018, 14(4):535-562. [4] SEUBERT P, VIGO-PELFREY C, ESCH F, et al. Isolation and quantification of soluble Alzheimer's beta-peptide from biological fluids[J]. Nature, 1992, 359(6393):325-327. [5] VANDERMEEREN M, MERCKEN M, VANMECHELEN E, et al. Detection of tau proteins in normal and Alzheimer's disease cerebrospinal fluid with a sensitive sandwich enzyme-linked immunosorbent assay[J]. J Neurochem, 1993, 61(5):1828-1834. [6] DUBOIS B, FELDMAN H H, JACOVA C, et al. Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria[J]. Lancet Neurol, 2007, 6(8):734-746. [7] JACK C R Jr, ALBERT M S, KNOPMAN D S, et al. Introduction to the recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease[J]. Alzheimers Dement, 2011, 7(3):257-262. [8] DUBOIS B, FELDMAN H H, JACOVA C, et al. Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria[J]. Lancet Neurol, 2014, 13(6):614-629. [9] HAMPEL H, CUMMINGS J, BLENNOW K, et al. Developing the ATX(N) classification for use across the Alzheimer disease continuum[J]. Nat Rev Neurol, 2021, 17(9):580-589. [10] 中华医学会神经病学分会痴呆与认知障碍学组. 阿尔茨海默病源性轻度认知障碍诊疗中国专家共识2021[J]. 中华神经科杂志,2022,55(5):421-440. [11] HUANG S, WANG Y J, GUO J, et al. Biofluid biomarkers of Alzheimer's disease: progress, problems, and perspectives[J]. Neurosci Bull, 2022, 38(6):677-691. [12] HANSSON O, LEHMANN S, OTTO M, et al. Advantages and disadvantages of the use of the CSFAmyloid β (Aβ) 42/40 ratio in the diagnosis of Alzheimer's Disease[J]. Alzheimers Res Ther, 2019, 11(1):34. [13] DELABY C, HIRTZ C, LEHMANN S. Overview of the blood biomarkers in Alzheimer's disease: promises and challenges[J]. Rev Neurol: Paris, 2023, 179(3):161-172. [14] LI Y, SCHINDLER S E, BOLLINGER J G, et al. Validation of plasma amyloid-beta 42/40 for detecting Alzheimer disease amyloid plaques[J]. Neurology, 2022, 98(7):e688-e699. [15] JANELIDZE S, TEUNISSEN C E, ZETTERBERG H, et al. Head-to-head comparison of 8 plasma amyloid-β 42/40 assays in Alzheimer disease[J].JAMA Neurol, 2021, 78(11):1375-1382. [16] FOSSATI S, RAMOS CEJUDO J, DEBURE L, et al. Plasma tau complements CSF tau and P-tau in the diagnosis of Alzheimer's disease[J]. Alzheimers Dement: Amst, 2019, 11:483-492. [17] JANELIDZE S, MATTSSON N, PALMQVIST S, et al. Plasma P-tau181 in Alzheimer's disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer's dementia[J]. Nat Med, 2020, 26(3):379-386. [18] TISSOT C, BENEDET A L, THERRIAULT J, et al. Plasma pTau181 predicts cortical brain atrophy in aging and Alzheimer's disease[J].Alzheimers Res Ther, 2021, 13(1):69. [19] MOSCOSO A, GROTHE M J, ASHTON N J, et al. Time course of phosphorylated-tau181 in blood across the Alzheimer's disease spectrum[J]. Brain, 2021, 144(1):325-339. [20] LUSSIER F Z, BENEDET A L, THERRIAULT J, et al. Plasma levels of phosphorylated tau 181 are associated with cerebral metabolic dysfunction in cognitively impaired and amyloid-positive individuals[J]. Brain Commun, 2021, 3(2):fcab073. [21] PALMQVIST S, JANELIDZE S, QUIROZ Y T, et al. Discriminative accuracy of plasma phospho-tau217 for Alzheimer disease vs other neurodegenerative disorders[J]. JAMA, 2020, 324(8):772-781. [22] CHEN L A, NIU X Q, WANG Y Y, et al. Plasma tau proteins for the diagnosis of mild cognitive impairment and Alzheimer's disease: a systematic review and meta-analysis[J]. Front Aging Neurosci, 2022, 14:942629. [23] ASHTON N J, JANELIDZE S, MATTSSON-CARLGREN N, et al. Differential roles of Aβ42/40, p-tau231 and p-tau217 for Alzheimer's trial selection and disease monitoring[J]. Nat Med, 2022, 28(12):2555-2562. [24] ASHTON N J, PASCOAL T A, KARIKARI T K, et al. Plasma p-tau231: a new biomarker for incipient Alzheimer's disease pathology[J]. Acta Neuropathol, 2021, 141(5):709-724. [25] MILÀ-ALOMÀ M, ASHTON N J, SHEKARI M, et al. Plasma p-tau231 and p-tau217 as state markers of amyloid-β pathology in preclinical Alzheimer's disease[J]. Nat Med, 2022, 28(9):1797-1801. [26] GONZALEZ-ORTIZ F, TURTON M, KAC P R, et al. Brain-derived tau: a novel blood-based biomarker for Alzheimer's disease-type neurodegeneration[J]. Brain, 2023, 146(3):1152-1165. [27] KHALIL M, TEUNISSEN C E, OTTO M, et al. Neurofilaments as biomarkers in neurological disorders[J]. Nat Rev Neurol, 2018, 14(10):577-589. [28] MATTSSON N, ANDREASSON U, ZETTERBERG H, et al. Association of plasma neurofilament light with neurodegeneration in patients with Alzheimer disease[J]. JAMA Neurol, 2017, 74(5):557-566. [29] PREISCHE O, SCHULTZ S A, APEL A, et al. Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer's disease[J]. Nat Med, 2019, 25(2):277-283. [30] GIACOMUCCI G, MAZZEO S, BAGNOLI S, et al. Plasma neurofilament light chain as a biomarker of Alzheimer's disease in subjective cognitive decline and mild cognitive impairment[J]. J Neurol, 2022, 269(8):4270-4280. [31] BENEDET A L, MILÀ-ALOMÀ M, VRILLON A, et al. Differences between plasma and cerebrospinal fluid glial fibrillary acidic protein levels across the Alzheimer disease continuum[J]. JAMA Neurol, 2021, 78(12):1471-1483. [32] PEREIRA J B, JANELIDZE S, SMITH R, et al. Plasma GFAP is an early marker of amyloid-beta but not tau pathology in Alzheimer's disease[J]. Brain, 2021, 144(11):3505-3516. [33] CHATTERJEE P, VERMUNT L, GORDON B A, et al. Plasma glial fibrillary acidic protein in autosomal dominant Alzheimer's disease: associations with Abeta-PET, neurodegeneration, and cognition[J]. Alzheimers Dement, 2023, 19(7):2790-2804. [34] CICOGNOLA C, JANELIDZE S, HERTZE J, et al. Plasma glial fibrillary acidic protein detects Alzheimer pathology and predicts future conversion to Alzheimer dementia in patients with mild cognitive impairment[J]. Alzheimers Res Ther, 2021, 13(1):68. [35] OECKL P, ANDERL-STRAUB S, VON ARNIM C A F, et al. Serum GFAP differentiates Alzheimer's disease from frontotemporal dementia and predicts MCI-to-dementia conversion[J]. J Neurol Neurosurg Psychiatry, 2022. DOI: 10.1136/jnnp-2021-328547. [36] TIBLE M, SANDELIUS Å, HÖGLUND K, et al. Dissection of synaptic pathways through the CSF biomarkers for predicting Alzheimer disease[J]. Neurology, 2020, 95(8):e953-e961. [37] SANDELIUS A, PORTELIUS E, KALLEN A, et al. Elevated CSF GAP-43 is Alzheimer's disease specific and associated with tau and amyloid pathology[J]. Alzheimers Dement, 2019, 15(1):55-64. [38] CHEN Y, HU S, WU X, et al. Synaptotagmin-1 is a bidirectional Ca(2+) sensor for neuronal endocytosis[J]. Proc Natl Acad Sci U S A, 2022, 119(20):e2111051119. [39] CASALETTO K B, ELAHI F M, BETTCHER B M, et al. Neurogranin, a synaptic protein, is associated with memory independent of Alzheimer biomarkers[J]. Neurology, 2017, 89(17):1782-1788. [40] SONG Z, XU Y, DENG W, et al. Brain derived exosomes are a double-edged sword in Alzheimer's disease[J]. Front Mol Neurosci, 2020, 13:79. [41] JIA L, ZHU M, KONG C, et al. Blood neuro-exosomal synaptic proteins predict Alzheimer's disease at the asymptomatic stage[J]. Alzheimers Dement, 2021, 17(1):49-60. [42] ANGELOPOULOU E, PAUDEL Y N, SHAIKH M F, et al. Flotillin: a promising biomarker for Alzheimer's disease[J]. J Pers Med, 2020, 10(2):20. [43] ABDULLAH M, KIMURA N, AKATSU H, et al. Flotillin is a novel diagnostic blood marker of Alzheimer's Disease[J]. J Alzheimers Dis, 2019, 72(4):1165-1176. |
[1] | SUN Li, YIN Weihong, JING Jun, QIAN Xiali. Effects of intraoperative subanesthetic dose of esketamine on early postoperative cognitive dysfunction in elderly patients undergoing spinal surgery [J]. Practical Geriatrics, 2024, 38(10): 1039-1043. |
[2] | . [J]. Practical Geriatrics, 2023, 37(10): 984-988. |
[3] | . [J]. Practical Geriatrics, 2023, 37(10): 1041-1043. |
[4] | . [J]. Practical Geriatrics, 2023, 37(10): 1059-1063. |
[5] | . [J]. Practical Geriatrics, 2023, 37(9): 869-872. |
[6] | WANG Min, GUO Wen-jun, TANG Zhong-quan, ZHAO Xiao-min, OU Ting, LI Yun-tao. Association between hearing impairment and Alzheimer's disease: a Meta-analysis [J]. Practical Geriatrics, 2023, 37(9): 915-919. |
[7] | . [J]. Practical Geriatrics, 2023, 37(8): 757-760. |
[8] | . [J]. Practical Geriatrics, 2023, 37(5): 521-523. |
[9] | . [J]. Practical Geriatrics, 2023, 37(4): 335-338. |
[10] | . [J]. Practical Geriatrics, 2023, 37(3): 234-237. |
[11] | GUO Xiao-juan, LIU Jie, WANG Jin, LU Wen-hui, GAO Ling, QU Qiu-min. Investigation and analysis of influencing factors of the medication adherence in patients with Alzheimer’s disease in Xi’an [J]. Practical Geriatrics, 2023, 37(1): 47-50. |
[12] | YE Niansi, HU Hui, DENG Bei, LIU Xueting, ZHOU Shi, LI Yucan, WANG Xiaomeng. Current situation and influencing factors of oral health-related quality of life in elderly with mild cognitive impairment [J]. Practical Geriatrics, 2024, 38(7): 674-678. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|