Practical Geriatrics ›› 2022, Vol. 36 ›› Issue (5): 523-527.doi: 10.3969/j.issn.1003-9198.2022.05.023
Previous Articles Next Articles
Received:
2021-07-13
Online:
2022-05-20
Published:
2022-05-27
CLC Number:
[1] ANAND A, PATIENCE A A, SHARMA N, et al. The present and future of pharmacotherapy of Alzheimer’s disease: a comprehensive review[J]. Eur J Pharmacol, 2017, 815: 364-375. [2] WANG C, HOLTZMAN D M. Bidirectional relationship between sleep and Alzheimer’s disease: role of amyloid, tau, and other factors[J]. Neuropsychopharmacology, 2020, 45(1): 104-120. [3] RINGMAN J M, MEDINA L D, RODRIGUEZ-AGUDELO Y, et al. Current concepts of mild cognitive impairment and their applicability to persons at-risk for familial Alzheimer’s disease[J]. Curr Alzheimer Res, 2009, 6(4): 341-346. [4] HENEKA M T, CARSON M J, EL KHOURY J, et al. Neuroinflammation in Alzheimer’s disease[J]. Lancet Neurol, 2015, 14(4): 388-405. [5] LIM A S, KOWGIER M, YU L, et al. Sleep fragmentation and the risk of incident Alzheimer’s disease and cognitive decline in older persons[J]. Sleep, 2013, 36(7): 1027-1032. [6] ZHANG F, ZHONG R, LI S, et al. Alteration in sleep architecture and electroencephalogram as an early sign of Alzheimer’s disease preceding the disease pathology and cognitive decline[J]. Alzheimers Dement, 2019, 15(4): 590-597. [7] JU Y-E S, MCLELAND J S, TOEDEBUSCH C D, et al. Sleep quality and preclinical Alzheimer disease[J]. JAMA Neurol, 2013, 70(5): 587-593. [8] WINER J R, MANDER B A, HELFRICH R F, et al. Sleep as a potential biomarker of tau and β-Amyloid burden in the human brain[J]. J Neurosci, 2019, 39(32): 6315-6324. [9] OOMS S, OVEREEM S, BESSE K, et al. Effect of 1 night of total sleep deprivation on cerebrospinal fluid beta-amyloid 42 in healthy middle-aged men: a randomized clinical trial[J]. JAMA Neurol, 2014, 71(8): 971-977. [10] NIWA Y, KANDA G N, YAMADA R G, et al. Muscarinic acetylcholine receptors chrm1 and chrm3 are essential for REM Sleep[J]. Cell Rep, 2018, 24(9): 2231-2247. [11] LEISER S C, LI Y, PEHRSON A L, et al. Serotonergic regulation of prefrontal cortical circuitries involved in cognitive processing: a review of individual 5-ht receptor mechanisms and concerted effects of 5-ht receptors exemplified by the multimodal antidepressant vortioxetine[J]. ACS Chem Neurosci, 2015, 6(7): 970-986. [12] GRAU-RIVERA O, OPERTO G, FALCON C, et al. Association between insomnia and cognitive performance, gray matter volume, and white matter microstructure in cognitively unimpaired adults[J]. Alzheimers Res Ther, 2020, 12(1): 4. [13] LI K, LUO X, ZENG Q, et al. Interactions between sleep disturbances and Alzheimer’s disease on brain function: a preliminary study combining the static and dynamic functional MRI[J]. Sci Rep, 2019, 9(1): 19064. [14] LLORET M A, CERVERA-FERRI A, NEPOMUCENO M, et al. Is sleep disruption a cause or consequence of Alzheimer’s disease? Reviewing its possible role as a biomarker[J]. Int J Mol Sci, 2020, 21(3):1168. [15] COX R, SCHAPIRO A C, MANOACH D S, et al. Individual differences in frequency and topography of slow and fast sleep spindles[J]. Front Hum Neurosci, 2017, 11: 433. [16] DAVIDSON T J, KLOOSTERMAN F, WILSON M A. Hippocampal replay of extended experience[J]. Neuron, 2009, 63(4): 497-507. [17] BANDARABADI M, BOYCE R, GUTIERREZ HERRERA C, et al. Dynamic modulation of theta-gamma coupling during rapid eye movement sleep[J]. Sleep, 2019, 42(12) :zsz182. [18] NOFZINGER E A, BUYSSE D J, GERMAIN A, et al. Functional neuroimaging evidence for hyperarousal in insomnia[J]. Am J Psychiatry, 2004, 161(11): 2126-2128. [19] PRINZ P N, PESKIND E R, VITALIANO P P, et al. Changes in the sleep and waking EEGs of nondemented and demented elderly subjects[J]. J Am Geriatr Soc, 1982, 30(2): 86-93. [20] MANDER B A, MARKS S M, VOGEL J W, et al. Beta-amyloid disrupts human NREM slow waves and related hippocampus-dependent memory consolidation[J]. Nat Neurosci, 2015, 18(7): 1051-1057. [21] LUCEY B P, MCCULLOUGH A, LANDSNESS E C, et al. Reduced non-rapid eye movement sleep is associated with tau pathology in early Alzheimer’s disease[J]. Sci Transl Med, 2019, 11(474) :eaau6550. [22] KAM K, PAREKH A, SHARMA R A, et al. Sleep oscillation-specific associations with Alzheimer’s disease CSF biomarkers: novel roles for sleep spindles and tau[J]. Mol Neurodegener, 2019, 14(1): 10. [23] WINER J R, MANDER B A, HELFRICH R F, et al. Sleep as a potential biomarker of tau and beta-amyloid burden in the human brain[J]. J Neurosci, 2019, 39(32): 6315-6324. [24] SONG Y, BLACKWELL T, YAFFE K, et al. Relationships between sleep stages and changes in cognitive function in older men: the MrOS Sleep Study[J]. Sleep, 2015, 38(3): 411-421. [25] MARSHALL L, HELGADOTTIR H, MOLLE M, et al. Boosting slow oscillations during sleep potentiates memory[J]. Nature, 2006, 444(7119): 610-613. [26] DEL FELICE A, MAGALINI A, MASIERO S. Slow-oscillatory transcranial direct current stimulation modulates memory in temporal lobe epilepsy by altering sleep spindle generators: a possible rehabilitation tool[J]. Brain Stimul, 2015, 8(3): 567-573. [27] SAHLEM G L, BADRAN B W, HALFORD J J, et al. Oscillating square wave transcranial direct current stimulation (tDCS) delivered during slow wave sleep does not improve declarative memory more than sham: a randomized sham controlled crossover study[J]. Brain Stimul, 2015, 8(3): 528-534. [28] BAYER L, CONSTANTINESCU I, PERRIG S, et al. Rocking synchronizes brain waves during a short nap[J]. Curr Biol, 2011, 21(12): R461-R462. [29] TRAUER J M, QIAN M Y, DOYLE J S, et al. Cognitive behavioral therapy for chronic insomnia: a systematic review and meta-analysis[J]. Ann Intern Med, 2015, 163(3): 191-204. |
[1] | SUN Li, YIN Weihong, JING Jun, QIAN Xiali. Effects of intraoperative subanesthetic dose of esketamine on early postoperative cognitive dysfunction in elderly patients undergoing spinal surgery [J]. Practical Geriatrics, 2024, 38(10): 1039-1043. |
[2] | . [J]. Practical Geriatrics, 2023, 37(12): 1249-1254. |
[3] | . [J]. Practical Geriatrics, 2023, 37(10): 984-988. |
[4] | . [J]. Practical Geriatrics, 2023, 37(10): 1041-1043. |
[5] | . [J]. Practical Geriatrics, 2023, 37(10): 1059-1063. |
[6] | . [J]. Practical Geriatrics, 2023, 37(9): 869-872. |
[7] | WANG Min, GUO Wen-jun, TANG Zhong-quan, ZHAO Xiao-min, OU Ting, LI Yun-tao. Association between hearing impairment and Alzheimer's disease: a Meta-analysis [J]. Practical Geriatrics, 2023, 37(9): 915-919. |
[8] | . [J]. Practical Geriatrics, 2023, 37(8): 757-760. |
[9] | . [J]. Practical Geriatrics, 2023, 37(5): 521-523. |
[10] | . [J]. Practical Geriatrics, 2023, 37(4): 335-338. |
[11] | . [J]. Practical Geriatrics, 2023, 37(3): 234-237. |
[12] | GUO Xiao-juan, LIU Jie, WANG Jin, LU Wen-hui, GAO Ling, QU Qiu-min. Investigation and analysis of influencing factors of the medication adherence in patients with Alzheimer’s disease in Xi’an [J]. Practical Geriatrics, 2023, 37(1): 47-50. |
[13] | ZHANG Nan, ZUO Wen-hang, WU Jin-hui. Effects of palliative care implementation on elderly patients with dementia: a systematic review and meta-analysis [J]. Practical Geriatrics, 2022, 36(6): 606-611. |
[14] | LI Bi-xi, ZHANG Ya-xin, LIU Pan, SONG Yu, LI Yun, MA Li-na. Correlation between muscle function and cognitive function in elderly [J]. Practical Geriatrics, 2022, 36(4): 386-389. |
[15] | LIU Ya-ling, PAN Xiao-dong, ZHOU Chen, SHU Ting-ting. Correlation between chronic inflammation, telomere length and cognitive function in patients with Alzheimer′s disease [J]. Practical Geriatrics, 2022, 36(3): 284-287. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|