[1] PRINTY B P, VERMA N, COWPERTHWAITE M C, et al. Effects of genetic variation on the dynamics of neurodegeneration in Alzheimer’s disease[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2014, 2014: 2464-2467. [2] VAN CAUWENBERGHE C, VAN BROECKHOVEN C, SLEEGERS K. The genetic landscape of Alzheimer disease: clinical implications and perspectives[J]. Genet Med, 2016, 18(5): 421-430. [3] MEZ J, DANESHVAR D H, KIERNAN P T, et al. Clinicopathological evaluation of chronic traumatic encephalopathy in players of American football[J]. JAMA, 2017, 318(4): 360-370. [4] DUGGER B N, DICKSON D W. Pathology of neurodegenerative diseases[J]. Cold Spring Harb Perspect Biol, 2017, 9(7): a028035. [5] PETRA A I, PANAGIOTIDOU S, HATZIAGELAKI E, et al. Gut-microbiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation[J]. Clin Ther, 2015, 37(5): 984-995. [6] ZHANG F, LUO W, SHI Y, et al. Should we standardize the 1, 700-year-old fecal microbiota transplantation[J]. Am J Gastroenterol,2012, 107(11): 1755-1756. [7] ZHANG F, CUI B, HE X, et al. Microbiota transplantation: concept, methodology and strategy for its modernization[J]. Protein Cell, 2018, 9(5): 462-473. [8] HVAS C L, DAHL JøRGENSEN S M, JøRGENSEN S P, et al. Fecal microbiota transplantation is superior to fidaxomicin for treatment of recurrent clostridium difficile infection[J]. Gastroenterology, 2019, 156(5): 1324-1332.e3. [9] VENDRIK K E W, OOIJEVAAR R E, DE JONG P R C, et al. Fecal microbiota transplantation in neurological disorders[J]. Front Cell Infect Microbiol, 2020, 10: 98. [10] HODSON R. Alzheimer’s disease[J]. Nature, 2018, 559(7715): S1. [11] TIWARI S, ATLURI V, KAUSHIK A, et al. Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics[J]. Int J Nanomedicine, 2019, 14: 5541-5554. [12] HARDY J, ALLSOP D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease[J]. Trends Pharmacol Sci, 1991, 12(10): 383-388. [13] BUSCHE M A, HYMAN B T. Synergy between amyloid-β and tau in Alzheimer’s disease[J]. Nat Neurosci, 2020, 23(10): 1183-1193. [14] VAN DER KANT R, GOLDSTEIN L S B, OSSENKOPPELE R. Amyloid-β-independent regulators of tau pathology in Alzheimer disease[J]. Nat Rev Neurosci, 2020, 21(1): 21-35. [15] HARACH T, MARUNGRUANG N, DUTHILLEUL N, et al. Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota[J]. Sci Rep, 2017, 7: 41802. [16] ZHAN G, YANG N, LI S, et al. Abnormal gut microbiota composition contributes to cognitive dysfunction in SAMP8 mice[J]. Aging, 2018, 10(6): 1257-1267. [17] KIM M S, KIM Y, CHOI H, et al. Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer’s disease animal model[J]. Gut, 2020, 69(2): 283-294. [18] OBESO J A, STAMELOU M, GOETZ C G, et al. Past, present, and future of Parkinson’s disease: a special essay on the 200th Anniversary of the Shaking Palsy[J]. Mov Disord, 2017, 32(9): 1264-1310. [19] 中华医学会神经病学分会帕金森病及运动障碍学组, 中国医师协会神经内科医师分会帕金森病及运动障碍学组. 中国帕金森病治疗指南(第四版)[J]. 中华神经科杂志, 2020, 53(12): 973-986. [20] BRAAK H, DEL TREDICI K. Neuropathological staging of brain pathology in sporadic Parkinson’s disease: separating the wheat from the chaff[J]. J Parkinsons Dis, 2017, 7(S1): S71-S85. [21] SVENSSON E, HORVáTH-PUHó E, THOMSEN R W, et al. Vagotomy and subsequent risk of Parkinson’s disease[J]. Ann Neurol, 2015, 78(4): 522-529. [22] SARKAR S, RAYMICK J, IMAM S. Neuroprotective and therapeutic strategies against Parkinson’s disease: recent perspectives[J]. Int J Mol Sci, 2016, 17(6): 904. [23] HASEGAWA S, GOTO S, TSUJI H, et al. Intestinal dysbiosis and lowered serum lipopolysaccharide-binding protein in Parkinson’s disease[J]. PLoS One, 2015, 10(11): e0142164. [24] SUN M F, ZHU Y L, ZHOU Z L, et al. Neuroprotective effects of fecal microbiota transplantation on MPTP-induced Parkinson’s disease mice: gut microbiota, glial reaction and TLR4/TNF-α signaling pathway[J]. Brain Behav Immun, 2018, 70: 48-60. [25] SAMPSON T R, DEBELIUS J W, THRON T, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease[J]. Cell, 2016, 167(6): 1469-1480. [26] HUANG H, XU H, LUO Q, et al. Fecal microbiota transplantation to treat Parkinson’s disease with constipation: a case report[J]. Medicine, 2019, 98(26): e16163. [27] XUE L J, YANG X Z, TONG Q, et al. Fecal microbiota transplantation therapy for Parkinson’s disease: a preliminary study[J]. Medicine, 2020, 99(35): e22035. [28] PETERS O M, GHASEMI M, BROWN R H, et al. Emerging mechanisms of molecular pathology in ALS[J]. J Clin Invest, 2015, 125(5): 1767-1779. [29] MAZZINI L, MOGNA L, DE MARCHI F, et al. Potential role of gut microbiota in als pathogenesis and possible novel therapeutic strategies[J]. J Clin Gastroenterol, 2018,52: S68-S70. [30] FIGUEROA-ROMERO C, GUO K, MURDOCK B J, et al. Temporal evolution of the microbiome, immune system and epigenome with disease progression in ALS mice[J]. Dis Model Mech, 2019, 13(2): dmm041947. [31] WU S, YI J, ZHANG Y G, et al. Leaky intestine and impaired microbiome in an amyotrophic lateral sclerosis mouse model[J]. Physiol Rep, 2015, 3(4): e12356. [32] BURBERRY A, WELLS M F, LIMONE F, et al. C9orf72 suppresses systemic and neural inflammation induced by gut bacteria[J]. Nature, 2020, 582(7810): 89-94. [33] MANDRIOLI J, AMEDEI A, CAMMAROTA G, et al. FETR-ALS study protocol: a randomized clinical trial of fecal microbiota transplantation in amyotrophic lateral sclerosis[J]. Front Neurol, 2019, 10: 1021. [34] DU G, DONG W, YANG Q, et al. Altered gut microbiota related to inflammatory responses in patients with Huntington’s disease[J]. Front Immunol, 2021, 11: 603594. |