[1] PIERCE A L, BULLAIN S S, KAWAS C H. Late-onset Alzheimer disease[J]. Neurol Clin, 2017, 35(2): 283-293. [2] FRANCESCHI C, GARAGNANI P, PARINI P, et al. Inflammaging: a new immune-metabolic viewpoint for age-related diseases[J]. Nat Rev Endocrinol, 2018, 14(10): 576-590. [3] LÓPEZ-OTÍN C, BLASCO M A, PARTRIDGE L, et al. Hallmarks of aging: an expanding universe[J]. Cell, 2023, 186(2): 243-278. [4] KOSYREVA A, SENTYABREVA A, TSVETKOV I, et al. Alzheimer's disease and inflammaging[J]. Brain Sci, 2022, 12(9):1237. [5] ONYANGO I G, JAUREGUI G V, ČARNÁM, et al. Neuroinflammation in Alzheimer's disease[J]. Biomedicines, 2021, 9(5) : 524. [6] BEHFAR Q, RAMIREZ ZUNIGA A, MARTINO-ADAMI P V. Aging, senescence, and dementia[J]. J Prev Alzheimers Dis, 2022, 9(3): 523-531. [7] LI X, LI C, ZHANG W, et al. Inflammation and aging: signaling pathways and intervention therapies[J]. Signal Transduct Target Ther, 2023, 8(1): 239. [8] SORACI L, CORSONELLO A, PAPARAZZO E, et al. Neuroinflammaging: a tight line between normal aging and age-related neurodegenerative disorders[J]. Aging Dis, 2024, 15(4): 1726-1747. [9] SOCHOCKA M, DINIZ B S, LESZEK J. Inflammatory response in the CNS: friend or foe?[J]. Mol Neurobiol, 2017, 54(10): 8071-8089. [10] PASCOAL T A, BENEDET A L, ASHTON N J, et al. Microglial activation and tau propagate jointly across Braak stages[J]. Nat Med, 2021, 27(9): 1592-1599. [11] PARTRIDGE L, FUENTEALBA M, KENNEDY B K. The quest to slow ageing through drug discovery[J]. Nat Rev Drug Discov, 2020, 19(8): 513-532. [12] HERDY J R, TRAXLER L, AGARWAL R K, et al. Increased post-mitotic senescence in aged human neurons is a pathological feature of Alzheimer's disease[J]. Cell Stem Cell, 2022, 29(12): 1637-1652.e6. [13] CHINTA S J, WOODS G, RANE A, et al. Cellular senescence and the aging brain[J]. Exp Gerontol, 2015, 68: 3-7. [14] KANG C, XU Q, MARTIN T D, et al. The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4[J]. Science, 2015, 349(6255): aaa5612. [15] RODIER F, COPPÉ J P, PATIL C K, et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion[J]. Nat Cell Biol, 2009, 11(8): 973-979. [16] SALMINEN A, KAUPPINEN A, KAARNIRANTA K. Emerging role of NF-κB signaling in the induction of senescence-associated secretory phenotype(SASP)[J]. Cell Signal, 2012, 24(4): 835-845. [17] YOUSEFZADEH M J, FLORES R R, ZHU Y, et al. An aged immune system drives senescence and ageing of solid organs[J]. Nature, 2021, 594(7861): 100-105. [18] DI MICCO R, KRIZHANOVSKY V, BAKER D, et al. Cellular senescence in ageing: from mechanisms to therapeutic opportunities[J]. Nat Rev Mol Cell Biol, 2021, 22(2): 75-95. [19] BASISTY N, KALE A, JEON O H, et al. A proteomic atlas of senescence-associated secretomes for aging biomarker development[J]. PLoS Biol, 2020, 18(1): e3000599. [20] ZHANG L, PITCHER L E, YOUSEFZADEH M J, et al. Cellular senescence: a key therapeutic target in aging and diseases[J]. J Clin Invest, 2022, 132(15): e158450. [21] GUEBEL D V, TORRES N V. Sexual dimorphism and aging in the human hyppocampus: identification, validation, and impact of differentially expressed genes by factorial microarray and network analysis[J]. Front Aging Neurosci, 2016, 8: 229. [22] GULEN M F, SAMSON N, KELLER A, et al. cGAS–STING drives ageing-related inflammation and neurodegeneration[J]. Nature, 2023, 620(7973): 374-380. [23] ANDRONIE-CIOARA F L, ARDELEAN A I, NISTOR-CSEPPENTO C D, et al. Molecular mechanisms of neuroinflammation in aging and Alzheimer's disease progression[J]. Int J Mol Sci, 2023, 24(3): 1869. [24] NEWTON K, STRASSER A, KAYAGAKI N, et al. Cell death[J]. Cell, 2024, 187(2): 235-256. [25] TAN M S, TAN L, JIANG T, et al. Amyloid-β induces NLRP1-dependent neuronal pyroptosis in models of Alzheimer's disease[J]. Cell Death Dis, 2014, 5(8): e1382. [26] MENZIES F M, FLEMING A, CARICASOLE A, et al. Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities[J]. Neuron, 2017, 93(5): 1015-1034. [27] AFRIDI R, KIM J H, RAHMAN M H, et al. Metabolic regulation of glial phenotypes: implications in neuron-glia interactions and neurological disorders[J]. Front Cell Neurosci, 2020, 14: 20. [28] MIWA S, KASHYAP S, CHINI E, et al. Mitochondrial dysfunction in cell senescence and aging[J]. J Clin Invest, 2022, 132(13): e158447. [29] SON J M, LEE C. Aging: All roads lead to mitochondria[J]. Semin Cell Dev Biol, 2021, 116: 160-168. [30] YEN K, MEHTA H H, KIM S J, et al. The mitochondrial derived peptide humanin is a regulator of lifespan and healthspan[J]. Aging: Albany NY, 2020, 12(12): 11185-11199. [31] GHOSH T S, SHANAHAN F, O'TOOLE P W. The gut microbiome as a modulator of healthy ageing[J]. Nat Rev Gastroenterol Hepatol, 2022, 19(9): 565-584. [32] HARAN J P, MCCORMICK B A. Aging, frailty, and the microbiome-how dysbiosis influences human aging and disease[J]. Gastroenterology, 2021, 160(2): 507-523. [33] 万晓, 王新颖, 李宁. 短链脂肪酸的研究进展[J].中华胃肠外科杂志, 2015, 18(9) : 958-960. [34] BRUNT V E, LAROCCA T J, BAZZONI A E, et al. The gut microbiome-derived metabolite trimethylamine N-oxide modulates neuroinflammation and cognitive function with aging[J]. Geroscience, 2021, 43(1): 377-394. [35] PASCUCCI T, COLAMARTINO M, FIORI E, et al. P-cresol alters brain dopamine metabolism and exacerbates autism-like behaviors in the BTBR mouse[J]. Brain Sci, 2020, 10(4): 233. [36] MAHMOUDIANDEHKORDI S, ARNOLD M, NHO K, et al. Altered bile acid profile associates with cognitive impairment in Alzheimer's disease-An emerging role for gut microbiome[J]. Alzheimers Dement, 2019, 15(1): 76-92. [37] MARIZZONI M, CATTANEO A, MIRABELLI P, et al. Short-chain fatty acids and lipopolysaccharide as mediators between gut dysbiosis and amyloid pathology in Alzheimer's disease[J]. J Alzheimers Dis, 2020, 78(2): 683-697. |