[1] PATEL S G, KARLITZ J J, YEN T, et al. The rising tide of early-onset colorectal cancer: a comprehensive review of epidemiology, clinical features, biology, risk factors, prevention, and early detection[J]. Lancet Gastroenterol Hepatol, 2022, 7(3): 262-274. [2] MURPHY C C, ZAKI T A. Changing epidemiology of colorectal cancer-birth cohort effects and emerging risk factors[J]. Nat Rev Gastroenterol Hepatol, 2024, 21: 25-34. [3] FAN H, WEN R, ZHOU L, et al. Clinicopathological features and prognosis of synchronous and metachronous colorectal cancer: a retrospective cohort study[J]. Int J Surg, 2023, 109(12): 4073-4090. [4] LIAO C, HUANG W, LIN M, et al. Correlation of KMT2 family mutations with molecular characteristics and prognosis in colorectal cancer[J]. Int J Biol Markers, 2022, 37(2): 149-157. [5] GAN Y, ZHOU L, WANG R, et al. Curcumol reduces aerobic glycolysis and overcomes chemoresistance by inducing Cdh1-mediated Skp2 ubiquitination[J]. Am J Chin Med, 2023, 51(3): 723-740. [6] LIU M, XU X, PENG K, et al. Heparanase modulates the prognosis and development of BRAF V600E-mutant colorectal cancer by regulating AKT/p27Kip1/Cyclin E2 pathway[J]. Oncogenesis, 2022, 11(1): 58. [7] MORAFRAILE E C, SAIZ-LADERA C, NIETO-JIMÉNEZ C, et al. Mapping immune correlates and surfaceome genes in BRAF mutated colorectal cancers[J]. Curr Oncol, 2023, 30(3): 2569-2581. [8] 中华人民共和国卫生和计划生育委员会医政医管局, 中华医学会肿瘤学分会. 中国结直肠癌诊疗规范(2017年版)[J]. 中华外科杂志, 2018, 56(4):241-258. [9] YANG L, XU F. A novel anoikis-related risk model predicts prognosis in patients with colorectal cancer and responses to different immunotherapy strategies[J]. J Cancer Res Clin Oncol, 2023, 149(12): 10879-10892. [10] 张永健, 郭学海, 高秀凤, 等. Skp2及p27kip1在原发性胃癌组织的表达及对胃癌细胞增殖、凋亡的影响[J]. 中国实验诊断学, 2023, 27(5): 591-596. [11] ZHANG K, HU K, LI Q, et al. Discovery of novel 1, 3-diphenylpyrazine derivatives as potent S-phase kinase-associated protein 2 (Skp2) inhibitors for the treatment of cancer[J]. J Med Chem, 2023, 66(11): 7221-7242. [12] 陈继新, 廖鹏, 周裕淮, 等. circHERC4通过调节miR-105-5p/Skp2轴抑制结直肠癌细胞的增殖、迁移和侵袭[J]. 临床外科杂志, 2023, 31(8): 733-737. [13] 王海娟, 郑雅宾, 张静. Skp2/p27轴在结直肠癌发生发展中的作用机制研究[J]. 临床外科杂志, 2021, 29(11):1054-1058. [14] BROWN L K, KANAGASABAI T, LI G, et al. Co-targeting SKP2 and KDM5B inhibits prostate cancer progression by abrogating AKT signaling with induction of senescence and apoptosis[J]. Prostate, 2024, 84(9): 877-887. [15] MARUYAMA T, SAITO K, HIGURASHI M, et al. HMGA2 drives the IGFBP1/AKT pathway to counteract the increase in P27KIP1 protein levels in mtDNA/RNA-less cancer cells[J]. Cancer Sci, 2023, 114(1): 152-163. [16] 张青, 张曙, 刘颖, 等. SPY1和p27kip1在子宫内膜癌中的表达及其临床意义[J]. 临床与病理杂志, 2023, 43(8): 1507-1517. [17] 张媛媛. 脂肪酸-2-羟化酶对人结直肠癌细胞迁移和侵袭的影响及其作用机制[D]. 苏州: 苏州大学, 2021. [18] 高秀凤, 张永健, 郭学海, 等. skp2及p27Kip1蛋白与晚期胃癌患者临床预后的关系[J]. 中国老年学杂志, 2023, 43(23): 5667-5670. [19] HUANG J, TAN X, LIU Y, et al. Knockdown of UBE2I inhibits tumorigenesis and enhances chemosensitivity of cholangiocarcinoma via modulating p27kip1 nuclear export[J]. Mol Carcinog, 2023, 62(5): 700-715. [20] SHIVAROV V, TSVETKOVA G, HADJIEV E, et al. The relevance of HLA class II genes in JAK2 V617F-positive myeloproliferative neoplasms[J]. Hum Immunol, 2023, 84(3): 199-207. [21] LIU D, HOFMAN P. Expression of NOTCH1, NOTCH4, HLA-DMA and HLA-DRA is synergistically associated with T cell exclusion, immune checkpoint blockade efficacy and recurrence risk in ER-negative breast cancer[J]. Cell Oncol: Dordr, 2022, 45(3): 463-477. [22] 安雯, 潘四维, 段石杰, 等. 基于GEO基质评分和免疫评分分析HLA-DRA在胃癌组织中的表达及其临床意义[J]. 中国医科大学学报, 2021, 50(12): 1063-1068. |