[1] SAITOH Y, TAKAHASHI K. Current pharmacological treatment for Parkinson's disease[J]. Brain Nerve, 2023, 75(5): 441-449. [2] POSTUMA R B, BERG D, STERN M, et al. MDS clinical diagnostic criteria for Parkinson's disease[J]. Mov Disord, 2015, 30(12): 1591-1601. [3] BERG D, POSTUMA R B, ADLER C H, et al. MDS research criteria for prodromal Parkinson's disease[J]. Mov Disord, 2015, 30(12): 1600-1611. [4] HEINZEL S, BERG D, GASSER T, et al. Update of the MDS research criteria for prodromal Parkinson's disease[J]. Mov Disord, 2019, 34(10): 1464-1470. [5] MAHLKNECHT P, GASPERI A, DJAMSHIDIAN A, et al. Performance of the movement disorders society criteria for prodromal Parkinson's disease: a population-based 10-year study[J]. Mov Disord, 2018, 33(3): 405-413. [6] PILOTTO A, HEINZEL S, SUENKEL U, et al. Application of the movement disorder society prodromal Parkinson's disease research criteria in 2 independent prospective cohorts[J]. Mov Disord, 2017, 32(7): 1025-1034. [7] 中华医学会神经病学分会帕金森病及运动障碍学组, 中国医师协会神经内科医师分会帕金森病及运动障碍病专业委员会. 帕金森病前驱期诊断研究标准中国专家共识[J]. 中华老年医学杂志, 2019, 38(8): 825-831. [8] WANG X, ZHANG Y, ZHU C, et al. The diagnostic value of SNpc using NM-MRI in Parkinson's disease: meta-analysis[J]. Neurol Sci, 2019, 40(12): 2479-2489. [9] CHENG Z, ZHANG J, HE N, et al. Radiomic features of the nigrosome-1 region of the substantia nigra: using quantitative susceptibility mapping to assist the diagnosis of idiopathic Parkinson's disease[J]. Front Aging Neurosci, 2019, 11: 167. [10] MAHLKNECHT P, KRISMER F, POEWE W, et al. Meta-analysis of dorsolateral nigral hyperintensity on magnetic resonance imaging as a marker for Parkinson's disease[J]. Mov Disord, 2017, 32(4): 619-623. [11] ATKINSON-CLEMENT C, PINTO S, EUSEBIO A, et al. Diffusion tensor imaging in Parkinson's disease:review and meta-analysis[J]. Neuroimage Clin, 2017, 16: 98-110. [12] ORIMO S, SUZUKI M, INABA A, et al. 123I-MIBG myocardial scintigraphy for differentiating Parkinson's disease from other neurodegenerative Parkinsonism: a systematic review and meta-analysis[J]. Parkinsonism Relat Disord, 2012, 18(5): 494-500. [13] ROUSSAKIS A A, PICCINI P, POLITIS M. Clinical utility of DaTscanTM (123I-ioflupane injection) in the diagnosis of parkinsonian syndromes[J]. Degener Neurol Neuromuscul Dis, 2013, 3: 33-39. [14] BALLANGER B, KLINGER H, ECHE J, et al. Role of serotonergic 1A receptor dysfunction in depression associated with Parkinson's disease[J]. Mov Disord, 2012, 27(1): 84-89. [15] ISHIBASHI K, MIURA Y, WAGATSUMA K, et al. Occupancy of adenosine A2A receptors by istradefylline in patients with Parkinson's disease using 11C-preladenant PET[J]. Neuropharmacology, 2018, 143: 106-112. [16] XIANG J, TAO Y, XIA Y, et al. Development of an α-synuclein positron emission tomography tracer for imaging synucleinopathies[J]. Cell, 2023, 186(16): 3350-3367.e19. [17] FAYYAD M, SALIM S, MAJBOUR N, et al. Parkinson's disease biomarkers based on α-synuclein[J]. J Neurochem, 2019, 150(5): 626-636. [18] HONG Z, SHI M, CHUNGK A, et al. DJ-1 and α-synuclein in human cerebrospinal fluid as biomarkers of Parkinson's disease[J]. Brain, 2010, 133(3): 713-726. [19] ROSSI M, CANDELISE N, BAIARDI S, et al. Ultrasensitive RT-QuIC assay with high sensitivity and specificity for Lewy body-associated synucleinopathies[J]. Acta Neuropathol, 2020, 140(1): 49-62. [20] VAN RUMUND A, GREEN A J E, FAIRFOUL G, et al. α-Synuclein real-time quaking-induced conversion in the cerebrospinal fluid of uncertain cases of Parkinsonism[J]. Ann Neurol, 2019, 85(5): 777-781. [21] SHAHNAWAZ M, TOKUDA T, WARAGAI M, et al. Development of a biochemical diagnosis of parkinson disease by detection of α-synuclein misfolded aggregates in cerebrospinal fluid[J]. JAMA Neurol, 2017, 74(2): 163-172. [22] LEGGIO L, VIVARELLI S, L'EPISCOPO F, et al. MicroRNAs in Parkinson's disease: from pathogenesis to novel diagnostic and therapeutic approaches[J]. Int J Mol Sci, 2017, 18(12): 2698. [23] YANG Z, LI T, LI S, et al. Altered expression levels of microRNA-132 and Nurr1 in peripheral blood of Parkinson's disease: potential disease biomarkers[J]. ACS Chem Neurosci, 2019, 10(5): 2243-2249. [24] WANG Y, YANG Z, LE W. Tiny but mighty: promising roles of microRNAs in the diagnosis and treatment of Parkinson's disease[J]. Neurosci Bull, 2017, 33(5): 543-551. [25] LI T, YANG Z, LI S, et al. Alterations of NURR1 and cytokines in the peripheral blood mononuclear cells: combined biomarkers for Parkinson's disease[J]. Front Aging Neurosci, 2018, 10: 392. [26] EIDSON L N, KANNARKAT G T, BARNUM C J, et al. Candidate inflammatory biomarkers display unique relationships with alpha-synuclein and correlate with measures of disease severity in subjects with Parkinson's disease[J]. J Neuroinflammation, 2017, 14(1): 164. [27] CUI S S, DU J J, LIU S H, et al. Serum soluble lymphocyte activation gene-3 as a diagnostic biomarker in Parkinson's disease: a pilot multicenter study[J]. Mov Disord, 2019, 34(1): 138-141. [28] NAIR A T, RAMACHANDRAN V, JOGHEE N M, et al. Gut microbiota dysfunction as reliable non-invasive early diagnostic biomarkers in the pathophysiology of Parkinson's disease: a critical review[J]. J Neurogastroenterol Motil, 2018, 24(1): 30-42. [29] PEREZ-PARDO P, DODIYA H B, ENGEN P A, et al. Role of TLR4 in the gut-brain axis in Parkinson's disease: a translational study from men to mice[J]. Gut, 2019, 68(5): 829-843. [30] SCHEPERJANS F, AHO V, PEREIRA P A B, et al. Gut microbiota are related to Parkinson's disease and clinical phenotype[J]. Mov Disord, 2015, 30(3): 350-358. [31] TAMBASCO N, ROMOLI M, CALABRESI P. Levodopa in Parkinson's disease: current status and future developments[J]. Curr Neuropharmacol, 2018, 16(8): 1239-1252. [32] LI Y, VORA L K, WANG J, et al. Poly(acrylic acid)/poly(vinyl alcohol) microarray patches for continuous transdermal delivery of levodopa and carbidopa: in vitro and in vivo studies[J]. Pharmaceutics, 2024, 16(5): 676. [33] KAYHANIAN S, BARKER R A. Dopamine cell-based replacement therapies[J]. Cold Spring Harb Perspect Med, 2024: a041611. [34] CARTOON J, RAMALINGAM J. Dopamine dysregulation syndrome in non-parkinson's disease patients: a systematic review[J]. Australas Psychiatry, 2019, 27(5): 456-461. [35] STOCCHI F, FOSSATI B, TORTI M. Safety considerations when using non-ergot dopamine agonists to treat Parkinson's disease[J]. Expert Opin Drug Saf, 2020, 19(9): 1155-1172. [36] VAN WAMELEN D J, LETA V, CHAUDHURI K R, et al. Future directions for developing non-dopaminergic strategies for the treatment of Parkinson's disease[J]. Curr Neuropharmacol, 2024, 22(10): 1606-1620. [37] KANDA T, JENNER P. Can adenosine A2A receptor antagonists modify motor behavior and dyskinesia in experimental models of Parkinson's disease?[J]. Parkinsonism Relat Disord, 2020,80(Suppl 1):S21-S27. [38] HARIZ M, BLOMSTEDT P. Deep brain stimulation for Parkinson's disease[J]. J Intern Med,2022, 292(5): 764-778. [39] PAFF M, LOH A, SARICA C, et al. Update on current technologies for deep brain stimulation in Parkinson's disease[J]. J Mov Disord, 2020, 13(3): 185-198. [40] GERMANN J, GOUVEIA F V, BEYN M E, et al. Computational neurosurgery in deep brain stimulation[J]. Adv Exp Med Biol, 2024, 1462: 435-451. [41] LANG A E, OBESO J A. Stem cell therapy for Parkinson's disease[J]. Ann Neurol, 2012, 71(2): 283. [42] MORIZANE A. Cell therapy for Parkinson's disease with induced pluripotent stem cells[J]. Inflamm Regen, 2023, 43(1): 16. [43] PINJALA P, TRYPHENA K P, PRASAD R, et al. CRISPR/Cas9 assisted stem cell therapy in Parkinson's disease[J]. Biomater Res, 2023, 27(1): 46. [44] LORENTE-PICÓN M, LAGUNA A. New avenues for Parkinson's disease therapeutics: disease-modifying strategies based on the gut microbiota[J]. Biomolecules, 2021, 11(3): 433. [45] JIA X, WANG Q, LIU M, et al. The interplay between gut microbiota and the brain-gut axis in Parkinson's disease treatment[J]. Front Neurol, 2024, 15: 1415463. [46] 张敏娜,王宏刚,薛刘军,等. 粪菌移植治疗帕金森病的研究进展[J]. 生物工程学报, 2021, 37(11): 3812-3819. [47] CHRISTINE C W, RICHARDSON R M, VAN LAAR A D, et al. Safety of AADC gene therapy for moderately advanced parkinson disease: three-year outcomes from the PD-1101 trial[J]. Neurology, 2022, 98(1): e40-e50. [48] CHU Y T, TAI C H, LIN C H, et al. Updates on the genetics of Parkinson's disease: clinical implications and future treatment[J]. Acta Neurol Taiwan, 2021, 30(3): 83-93. |