[1] ZHOU Z D, KIHARA A H. Neurodegenerative diseases: molecular mechanisms and therapies[J]. Int J Mol Sci, 2023, 24(18): 13721. [2] MONTEIRO A R, BARBOSA D J, REMIÃO F, et al. Alzheimer’s disease: insights and new prospects in disease pathophysiology, biomarkers and disease-modifying drugs[J]. Biochem Pharmacol, 2023, 211: 115522. [3] MORRIS H R, SPILLANTINI M G, SUE C M, et al. The pathogenesis of Parkinson’s disease[J]. Lancet, 2024, 403(10423): 293-304. [4] GAO C, JIANG J, TAN Y, et al. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets[J]. Signal Transduct Target Ther, 2023, 8(1): 359. [5] UCEDA S, ECHEVERRY-ALZATE V, REIRIZ-ROJAS M, et al. Gut microbial metabolome and dysbiosis in neurodegenerative diseases: psychobiotics and fecal microbiota transplantation as a therapeutic approach - a comprehensive narrative review[J]. Int J Mol Sci, 2023, 24(17): 13294. [6] NAUFEL M F, TRUZZI G M, FERREIRA C M, et al. The brain-gut-microbiota axis in the treatment of neurologic and psychiatric disorders[J]. Arq Neuropsiquiatr, 2023, 81(7): 670-684. [7] ZHOU C, RAO X, WANG H, et al. Hippocampus-specific regulation of long non-coding RNA and mRNA expression in germ-free mice[J]. Funct Integr Genomics, 2020, 20(3): 355-365. [8] WANG H Y, LIU L X, CHEN X Y, et al. Comprehensive analysis of the gut microbiome and post-translational modifications elucidates the route involved in microbiota-host interactions[J]. Zool Res, 2024, 45(1): 95-107. [9] AGIRMAN G, HSIAO E Y. SnapShot: the microbiota-gut-brain axis[J]. Cell, 2021, 184(9): 2524-2524.e1. [10] BERTHOUZOZ E, LAZAREVIC V, ZEKERIDOU A, et al. Oral and intestinal dysbiosis in Parkinson’s disease[J]. Rev Neurol: Paris,2023, 179(9): 937-946. [11] SUN M F, ZHU Y L, ZHOU Z L, et al. Neuroprotective effects of fecal microbiota transplantation on MPTP-induced Parkinson’s disease mice: gut microbiota, glial reaction and TLR4/TNF-α signaling pathway[J]. Brain Behav Immun, 2018, 70: 48-60. [12] GRAVINA C, FORMATO M, PICCOLELLA S, et al.Lavandula austroapennina (Lamiaceae): getting insights into bioactive polyphenols of a rare Italian endemic vascular plant[J]. Int J Mol Sci, 2023, 24(9): 8038. [13] WANG Y, JIA Y, LI S, et al. Gut microbiome-mediated glucose and lipid metabolism mechanism of star apple leaf polyphenol-enriched fraction on metabolic syndrome in diabetic mice[J]. Phytomedicine, 2023, 115: 154820. [14] DENG H, LIU J, XIAO Y, et al. Possible mechanisms of dark tea in cancer prevention and management: a comprehensive review[J]. Nutrients, 2023, 15(18): 3903. [15] LI J, LIAO R, ZHANG S, et al. Promising remedies for cardiovascular disease: natural polyphenol ellagic acid and its metabolite urolithins[J]. Phytomedicine, 2023, 116: 154867. [16] GUO Y, YANG Y. Progress of plant polyphenol extracts in treating depression by anti-neuroinflammatory mechanism: a review[J]. Medicine: Baltimore, 2024, 103(5): e37151. [17] WANG Q, YANG Q, LIU X. The microbiota-gut-brain axis and neurodevelopmental disorders[J]. Protein Cell, 2023, 14(10): 762-775. [18] LI X, WANG C, ZHU J, et al. Sodium butyrate ameliorates oxidative stress-induced intestinal epithelium barrier injury and mitochondrial damage through AMPK-mitophagy pathway[J]. Oxid Med Cell Longev, 2022, 2022: 3745135. [19] SANMARCO L M, WHEELER M A, GUTIÉRREZ-VÁZQUEZ C, et al. Gut-licensed IFNγ+ NK cells drive LAMP1+TRAIL+ anti-inflammatory astrocytes[J]. Nature, 2021, 590(7846): 473-479. [20] NEEDHAM B D, FUNABASHI M, ADAME M D, et al. A gut-derived metabolite alters brain activity and anxiety behaviour in mice[J]. Nature, 2022, 602(7898): 647-653. [21] MARGOLIS K G, CRYAN J F, MAYER E A. The microbiota-gut-brain axis: from motility to mood[J]. Gastroenterology, 2021, 160(5): 1486-1501. [22] NSHANIAN M, GELLER B S, GRUBER J J, et al. Short-chain fatty acids propionate and butyrate control growth and differentiation linked to cellular metabolism[J]. Res Sq[Preprint]. 2024, 16:rs.3.rs-3935562. [23] Al M S, MALIK S S, Al I M, et al. Free fatty acid receptors (FFARs) in adipose: physiological role and therapeutic outlook[J]. Cells, 2022, 11(4):750. [24] ZHU F, MA J, LI W, et al. The orphan receptor Nur77 binds cytoplasmic LPS to activate the non-canonical NLRP3 inflammasome[J]. Immunity, 2023, 56(4): 753-767. [25] WAN M L Y, CO V A, EL-NEZAMI H. Dietary polyphenol impact on gut health and microbiota[J]. Crit Rev Food Sci Nutr, 2021, 61(4): 690-711. [26] LIPPOLIS T, COFANO M, CAPONIO G R, et al. Bioaccessibility and bioavailability of diet polyphenols and their modulation of gut microbiota[J]. Int J Mol Sci, 2023, 24(4): 3813. [27] KHATOON S, KALAM N, RASHID S, et al. Effects of gut microbiota on neurodegenerative diseases[J]. Front Aging Neurosci, 2023, 15: 1145241. [28] ZAGÓRSKA J, PIETRZAK K, KUKULA-KOCH W, et al. Influence of diet on the bioavailability of active components from Zingiber officinale using an in vitro digestion model[J]. Foods, 2023, 12(21): 3897. [29] ZHANG X, WANG G, GURLEY E C, et al. Flavonoid apigenin inhibits lipopolysaccharide-induced inflammatory response through multiple mechanisms in macrophages[J]. PLoS One, 2014, 9(9): e107072. [30] GRAVANDI M M, ABDIAN S, TAHVILIAN M, et al. Therapeutic targeting of Ras/Raf/MAPK pathway by natural products: a systematic and mechanistic approach for neurodegeneration[J]. Phytomedicine, 2023, 115: 154821. [31] PECCHILLO CIMMINO T, AMMENDOLA R, CATTANEO F, et al. NOX dependent ROS generation and cell metabolism[J]. Int J Mol Sci, 2023, 24(3): 2086. [32] BERTELLI A, BIAGI M, CORSINI M, et al. Polyphenols: from theory to practice[J]. Foods, 2021, 10(11): 2595. [33] XIE K, YANG Q, YAN Z, et al. Overexpression of SIRT1 alleviates oxidative damage and barrier dysfunction in CPB2 toxin-infected IPEC-J2 cells[J]. Microb Pathog, 2023, 181: 106181. [34] QIAN L, ZHU Y, DENG C, et al. Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family in physiological and pathophysiological process and diseases[J]. Signal Transduct Target Ther, 2024, 9(1): 50. |