[1] CAO W, CHEN H D, YU Y W, et al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020[J]. Chin Med J: Engl, 2021, 134(7):783-791. [2] 刘健. 国际老年肿瘤学会和欧洲乳腺癌专家学会联合制定的《老年乳腺癌治疗指南》解读[J]. 中华乳腺病杂志:电子版, 2012, 6(6):609-612. [3] 孙丽云, 沈赞. 老年乳腺癌的诊疗新进展[J].现代肿瘤医学, 2016, 24(22):3663-3666. [4] 汪颖姣, 王立洪, 李如茵, 等. 乳腺超声在乳腺癌筛查中的研究进展[J]. 协和医学杂志, 2022, 13(2):315-319. [5] 中国老年乳腺癌治疗共识专家组. 中国老年乳腺癌治疗专家共识(2018)[J]. 协和医学杂志, 2018, 9(4):307-312. [6] ALLISON K H, HAMMOND M, DOWSETT M, et al. Estrogen and progesterone receptor testing in breast cancer:ASCO/CAP Guideline Update[J]. J Clin Oncol, 2020, 38(12):1346-1366. [7] LI A Q, ZHOU S L, LI M, et al. Clinicopathologic characteristics of oestrogen receptor-positive/progesterone receptor-negative/Her2-negative breast cancer according to a novel definition of negative progesterone receptor status:a large population-based study from China[J]. PLoS One, 2015, 10(5):e0125067. [8] 《乳腺癌HER2检测指南(2019版)》编写组. 乳腺癌HER2检测指南(2019版)[J]. 中华病理学杂志, 2019, 48(3):169-175. [9] 江泽飞, 邵志敏, 徐兵河. 人表皮生长因子受体2阳性乳腺癌临床诊疗专家共识2016[J]. 中华医学杂志, 2016, 96(14):1091-1096. [10] 何年安. 2013版超声乳腺影像报告及数据系统分级解读与临床应用新进展[J]. 安徽医学, 2015(11):1424-1427. [11] ADLER D D, CARSON P L, RUBIN J M, et al. Doppler ultrasound color flow imaging in the study of breast cancer: preliminary findings[J]. Ultrasound Med Biol, 1990, 16(6):553-559. [12] PEROU C M, SRLIE T, EISEN M B, et al. Molecular portraits of human breast tumours[J]. Nature, 2000, 406(6797):747-752. [13] 黄亮亮, 吕俊远, 唐应麒, 等. 乳腺癌分子分型与临床病理特征的相关性研究[J]. 重庆医学, 2019, 48(10):1701-1704. [14] 黄雅娟, 杜峰, 魏玲丽. 老年乳腺癌的流行病学研究及其对行根治性手术治疗患者生存期的影响[J]. 中国老年学杂志, 2015, 35(13):3653-3655. [15] 张玉铃, 李结映, 刘迪填, 等. 高龄乳腺癌临床特征及预后因素[J]. 中国老年学杂志, 2019, 39(8):1842-1844. [16] BARBA D, LEÓN-SOSA A, LUGO P, et al. Breast cancer, screening and diagnostic tools: all you need to know[J]. Crit Rev Oncol Hematol, 2021, 157(Suppl 1):103174. [17] GUO Y, HU Y, QIAO M, et al. Radiomics analysis on ultrasound for prediction of biologic behavior in breast invasive ductal carcinoma[J]. Clin Breast Cancer, 2018, 18(3):e335-e344. [18] JIANG M, ZHANG D, TANG S C, et al. Deep learning with convolutional neural network in the assessment of breast cancer molecular subtypes based on US images:a multicenter retrospective study[J]. Eur Radiol, 2021, 31(6):3673-3682. [19] IRSHAD A, LEDDY R, PISANO E, et al. Assessing the role of ultrasound in predicting the biological behavior of breast cancer[J]. Am J Roentgenol, 2013, 200(2):284-290. [20] 朱阳阳, 聂芳, 吕文豪, 等. 乳腺癌常规超声及超声造影特征与HER-2表达的相关性研究[J]. 中国超声医学杂志, 2020, 36(7):606-609. [21] 赵旦波, 林义, 张敏青, 等. 不同分子分型乳腺癌患者超声影像学, 病理特点及预后分析[J]. 全科医学临床与教育, 2021, 19(10):914-917. [22] 唐恩红, 杨少玲, 王凤翎, 等. 分子亚型乳腺癌的超声特征对照研究[J]. 中国超声医学杂志, 2022, 38(1):22-25. [23] 吴翠怡, 冯宁娜, 邓敏君, 等. 不同分子分型乳腺癌超声征象的研究[J]. 中国医学前沿杂志:电子版, 2018, 10(3):89-93. [24] VANE M L G, VAN NIJINATTEN T J A, NELEMANS P J, et al. Does the subtype of breast cancer affect the diagnostic performance of axillary ultrasound for nodal staging in breast cancer patients?[J]. Eur J Surg Oncol, 2019, 45(4):573-577. |