实用老年医学 ›› 2023, Vol. 37 ›› Issue (11): 1166-1169.doi: 10.3969/j.issn.1003-9198.2023.11.022
陈秋羽, 王展展, 李春华
收稿日期:
2022-12-13
出版日期:
2023-11-20
发布日期:
2023-11-22
通讯作者:
李春华,Email:li31388@163.com
Received:
2022-12-13
Online:
2023-11-20
Published:
2023-11-22
中图分类号:
陈秋羽, 王展展, 李春华. 肠道菌群相关短链脂肪酸在COPD发病机制中的作用研究进展[J]. 实用老年医学, 2023, 37(11): 1166-1169.
[1] CHRISTENSON S A, SMITH B M, BAFADHEL M, et al. Chronic obstructive pulmonary disease[J]. Lancet, 2022, 399(10342):2227-2242. [2] ZHANG D, LI S, WANG N, et al. The cross-talk between gut microbiota and lungs in common lung diseases[J]. Front Microbiol, 2020, 11:301. [3] SILVA Y P, BERNARDI A, FROZZA R L. The role of short-chain fatty acids from gut microbiota in gut-brain communication[J]. Front Endocrinol:Lausanne, 2020, 11:25. [4] ANANYA F N, AHAMMED M R, FAHEM M M, et al. Association of intestinal microbial dysbiosis with chronic obstructive pulmonary disease[J]. Cureus, 2021, 13(11):e19343. [5] BANDER Z A L, NITERT M D, MOUSA A, et al. The gut microbiota and inflammation: an overview[J]. Int J Environ Res Public Health, 2020, 17(20):7618. [6] WU Y, LUO Z, LIU C. Variations in fecal microbial profiles of acute exacerbations and stable chronic obstructive pulmonary disease[J]. Life Sci, 2021, 265:118738. [7] RAFTERY A L, TSANTIKOS E, HARRIS N L, et al. Links between inflammatory bowel disease and chronic obstructive pulmonary disease[J]. Front Immunol, 2020, 11:2144. [8] TROMPETTE A, GOLLWITZER E S, YADAVA K, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis[J]. Nat Med, 2014, 20(2):159-166. [9] RAMOS-GARCIA V, TEN-DOMÉNECH I, MORENO-GIMÉNEZ A, et al. GC-MS analysis of short chain fatty acids and branched chain amino acids in urine and faeces samples from newborns and lactating mothers[J]. Clin Chim Acta, 2022, 532:172-180. [10] FENG W, AO H, PENG C. Gut microbiota, short-chain fatty acids, and herbal medicines[J]. Front Pharmacol, 2018, 9:1354. [11] MACIEJ ZIE,TEK, ZBIGNIEW CELEWICZ, MAłGORZATA SZCZUKO. Short-chain fatty acids, maternal microbiota and metabolism in pregnancy[J]. Nutrients, 2021, 13(4):1244. [12] SALVI P S, COWLES R A. Butyrate and the intestinal epithelium: modulation of proliferation and inflammation in homeostasis and disease[J]. Cells, 2021, 10(7):1775. [13] FERRER-PICÓN E, DOTTI I, CORRALIZA A M, et al. Intestinal inflammation modulates the epithelial response to butyrate in patients with inflammatory bowel disease[J]. Inflamm Bowel Dis, 2020, 26(1): 43-55. [14] RAUF A, KHALIL A A, RAHMAN U UR, et al. Recent advances in the therapeutic application of short-chain fatty acids (SCFAs): an updated review[J]. Crit Rev Food Sci Nutr, 2022, 62(22):6034-6054. [15] LI M, VAN ESCH B C A M, WAGENAAR G T M, et al. Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells[J]. Eur J Pharmacol, 2018, 831:52-59. [16] STURM E M, KNUPLEZ E, MARSCHE G. Role of short chain fatty acids and apolipoproteins in the regulation of eosinophilia-associated diseases[J]. Int J Mol Sci, 2021, 22(9):4377. [17] LI N, DAI Z, WANG Z, et al. Gut microbiota dysbiosis contributes to the development of chronic obstructive pulmonary disease[J]. Respir Res, 2021, 22(1):274. [18] KARAVAEVA T M, MAKSIMENYA M V, TERESHKOV P P, et al. Long-chain fatty acids and short-chain fatty acids in exhaled breath condensate of patients with chronic obstructive pulmonary disease[J]. Biomeditsinskaya Khimiya, 2021, 67(2):169-174. [19] DANG A T, MARSLAND B J. Microbes, metabolites, and the gut–lung axis[J]. Mucosal Immunol, 2019, 12(4):843-850. [20] RICHARDS L B, LI M, FOLKERTS G, et al. Butyrate and propionate restore the cytokine and house dust mite compromised barrier function of human bronchial airway epithelial cells[J]. Int J Mol Sci, 2021, 22(1):65. [21] HISATA S, RACANELLI A C, KERMANI P, et al. Reversal of emphysema by restoration of pulmonary endothelial cells[J]. J Exp Med, 2021, 218(8):e20200938. [22] YUAN X, WANG L, BHAT O M, et al. Differential effects of short chain fatty acids on endothelial Nlrp3 inflammasome activation and neointima formation: antioxidant action of butyrate[J]. Redox Biol, 2018, 16:21-31. [23] KAROOR V, STRASSHEIM D, SULLIVAN T, et al. The short-chain fatty acid butyrate attenuates pulmonary vascular remodeling and inflammation in hypoxia-induced pulmonary hypertension[J]. Int J Mol Sci, 2021, 22(18): 9916. [24] ROBLES-VERA I, TORAL M, DE LA VISITACIÓN N, et al. Protective effects of short-chain fatty acids on endothelial dysfunction induced by angiotensin II[J]. Front Physiol, 2020, 11:277. [25] JANG Y O, KIM O H, KIM S J, et al. High-fiber diets attenuate emphysema development via modulation of gut microbiota and metabolism[J]. Sci Rep, 2021, 11(1):7008. [26] HAAK B W, LITTMANN E R, CHAUBARD J L, et al. Impact of gut colonization with butyrate-producing microbiota on respiratory viral infection following allo-HCT[J]. Blood, 2018, 131(26):2978-2986. [27] ANTUNES K H, FACHI J L, DE PAULA R, et al. Microbiota-derived acetate protects against respiratory syncytial virus infection through a GPR43-type 1 interferon response[J]. Nat Commun, 2019, 10(1):3273. [28] RUTTING S, XENAKI D, MALOUF M, et al. Short-chain fatty acids increase TNFα-induced inflammation in primary human lung mesenchymal cells through the activation of p38 mapk[J]. Am J Physiol Lung Cell Mol Physiol, 2019, 316(1):L157-L174. [29] KIM E K, SINGH D, PARK J H, et al. Impact of body mass index change on the prognosis of chronic obstructive pulmonary disease[J]. Respiration, 2021, 99(11):943-953. [30] PUTCHA N, ANZUETO A R, CALVERLEY P M A, et al. Mortality and exacerbation risk by body mass index in patients with COPD in TIOSPIR and UPLIFT[J]. Ann Am Thorac Soc, 2022, 19(2):204-213. [31] SCHWIERTZ A, TARAS D, SCHÄFER K, et al. Microbiota and SCFA in lean and overweight healthy subjects[J]. Obesity, 2010, 18(1):190-195. [32] SHIN M K, KWAK S H, PARK Y, et al. Association between dietary patterns and chronic obstructive pulmonary disease in Korean adults: the Korean genome and epidemiology study[J]. Nutrients, 2021, 13(12): 4348. [33] BALDRICK F R, ELBORN J S, WOODSIDE J V, et al. Effect of fruit and vegetable intake on oxidative stress and inflammation in COPD: a randomised controlled trial[J]. Eur Respir J, 2012, 39(6):1377-1384. [34] KALUZA J, LARSSON S C, ORSINI N, et al. Fruit and vegetable consumption and risk of COPD: a prospective cohort study of men[J]. Thorax, 2017, 72(6):500-509. [35] KALUZA J, HARRIS H R, LINDEN A, et al. Long-term consumption of fruits and vegetables and risk of chronic obstructive pulmonary disease: a prospective cohort study of women[J]. Int J Epidemiol, 2018, 47(6):1897-1909. [36] SZMIDT M K, KALUZA J, HARRIS H R, et al. Long-term dietary fiber intake and risk of chronic obstructive pulmonary disease: a prospective cohort study of women[J]. Eur J Nutr, 2020, 59(5):1869-1879. [37] MARKOWIAK-KOPEĆ P, ĆLIZ·EWSKA K. The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome[J]. Nutrients, 2020, 12(4):1107. [38] DU T, LEI A, ZHANG N, et al. The beneficial role of probiotic lactobacillus in respiratory diseases[J]. Front Immunol, 2022, 13:908010. [39] ZHAO Z, NING J, BAO X Q I, et al. Fecal microbiota transplantation protects rotenone-induced Parkinson's disease mice via suppressing inflammation mediated by the lipopolysaccharide-TLR4 signaling pathway through the microbiota-gut-brain axis[J]. Microbiome, 2021, 9(1):226. [40] EL-SALHY M, HATLEBAKK J G, GILJA O H, et al. Efficacy of faecal microbiota transplantation for patients with irritable bowel syndrome in a randomised, double-blind, placebo-controlled study[J]. Gut, 2020, 69(5):859-867. [41] JANG Y O, LEE S H, CHOI J J, et al. Fecal microbial transplantation and a high fiber diet attenuates emphysema development by suppressing inflammation and apoptosis[J]. Exp Mol Med, 2020, 52(7):1128-1139. [42] ASHIQUE S, DE RUBIS G, SIROHI E, et al. Short chain fatty acids: fundamental mediators of the gut-lung axis and their involvement in pulmonary diseases[J]. Chem Biol Interact, 2022, 368:110231. [43] ZHANG F, WAN Y, ZUO T, et al. Prolonged impairment of short-chain fatty acid and L-isoleucine biosynthesis in gut microbiome in patients with COVID-19[J]. Gastroenterology, 2022, 162(2):548-561. |
[1] | 周赟, 张影影, 高妍芬. 肺力咳合剂联合噻托溴铵粉雾剂在高龄慢性阻塞性肺疾病病人中的效果观察[J]. 实用老年医学, 2024, 38(10): 1011-1015. |
[2] | 雷万锋, 马秀红. 老年COPD急性加重期病人血清IL-33/sST2轴表达及其对预后的预测价值[J]. 实用老年医学, 2024, 38(10): 1044-1048. |
[3] | 徐金燕, 夏聪聪, 杨红美. 老年脑卒中肺部感染风险预测模型的建立及验证[J]. 实用老年医学, 2024, 38(5): 452-437. |
[4] | 彭泽通, 张尧, 刘斌. 贫血对老年社区获得性肺炎死亡的影响分析[J]. 实用老年医学, 2024, 38(3): 260-264. |
[5] | 苏雪姣, 刘月, 孙蜀宁. 高龄新型冠状病毒感染老年人外周血液学指标与预后的相关性[J]. 实用老年医学, 2024, 38(3): 291-292. |
[6] | 张杰斯, 黎艳聪, 卢钻芬, 李明标. 黏液玫瑰单胞菌致COPD急性加重1例及文献分析[J]. 实用老年医学, 2024, 38(3): 322-324. |
[7] | 王瑞萍, 张妮. COPD病人一氧化碳弥散量与运动耐力、呼吸困难及通气效率的相关性研究[J]. 实用老年医学, 2024, 38(2): 141-144. |
[8] | 姬泽萱, 冯平, 李峰, 项保利, 冯改霞. 老年男性COPD合并骨质疏松病人睾酮及FGF23、MMP-9水平的变化[J]. 实用老年医学, 2024, 38(2): 176-178. |
[9] | 周柳青, 周计雪, 柳毅. 抑郁症病人抗抑郁药物治疗中2次发生肺栓塞:2例报道[J]. 实用老年医学, 2024, 38(2): 203-205. |
[10] | 秦克, 李同林, 华俊萍, 江美芳. 老年COPD稳定期病人经鼻高流量湿化氧疗血清颗粒蛋白前体表达水平及意义[J]. 实用老年医学, 2023, 37(12): 1215-1218. |
[11] | 李娜, 叶莹, 王鸿林, 周秋红. 老年新型冠状病毒感染病人营养支持的研究进展[J]. 实用老年医学, 2023, 37(11): 1081-1075. |
[12] | 郭佳丽, 黄淳, 陶子荣, 彭伶丽. 老年新型冠状病毒感染病人俯卧位通气管理的最佳证据总结[J]. 实用老年医学, 2023, 37(11): 1086-1091. |
[13] | 王雪敬, 邓宝凤, 罗昌春, 赵玉荣, 张爱军, 刘海荣, 赵艳梅. 新型冠状病毒感染期间远程探视系统在老年肿瘤住院病人中的应用[J]. 实用老年医学, 2023, 37(11): 1095-1098. |
[14] | 王世福, 欧宗兴, 符沙沙. 老年COPD相关肺动脉高压病人血管活性肠肽水平及其与高凝、低氧状态和血管内皮功能的相关性[J]. 实用老年医学, 2023, 37(9): 907-910. |
[15] | 孙晖, 任莉, 胡静星, 李秀娥, 郝旭. Ⅳ型胶原蛋白、Ⅲ型前胶原氨基端肽与老年特发性肺纤维化病人肺功能和急性加重的相关性[J]. 实用老年医学, 2023, 37(9): 929-933. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|