[1] MITCHELL P, LIEW G, GOPINATH B, et al. Age-related macular degeneration[J]. Lancet, 2018, 392(10153):1147-1159. [2] JOACHIM N, MITCHELL P, BURLUTSKY G, et al. The incidence and progression of age-related macular degeneration over 15 years: The Blue Mountains Eye Study[J]. Ophthalmology, 2015, 122(12): 2482-2489. [3] VAN LOOKEREN CAMPAGNE M, LECOUTER J, YASPAN B L, et al. Mechanisms of age-related macular degeneration and therapeutic opportunities[J]. J Pathol, 2014, 232(2): 151-164. [4] HERNÁNDEZ-ZIMBRÓN L F, ZAMORA-ALVARADO R, OCHOA-DE LA PAZ L, et al. Age-related macular degeneration: new paradigms for treatment and management of AMD[J]. Oxid Med Cell Longev, 2018, 2018: 8374647. [5] ZHAO T, GUO X, SUN Y. Ironaccumulation and lipid peroxidation in the aging retina: implication of ferroptosis in age-related macular degeneration[J]. Aging Dis, 2021, 12(2): 529-551. [6] JIANG X, STOCKWELL B R, CONRAD M. Ferroptosis: mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021, 22(4):266-282. [7] DO VAN B, GOUEL F, JONNEAUX A, et al. Ferroptosis, a newly characterized form of cell death in ParkinsoŃs disease that is regulated by PKC[J]. Neurobiol Dis, 2016, 94: 169-178. [8] STOCKWELL B R, FRIEDMANN ANGELI J P, BAYIR H, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease[J]. Cell, 2017, 171(2):273-285. [9] WANG H, AN P, XIE E, et al. Characterization of ferroptosis in murine models of hemochromatosis[J]. Hepatology, 2017, 66(2): 449-465. [10] SUN Y, ZHENG Y, WANG C, et al. Glutathione depletion induces ferroptosis, autophagy, and premature cell senescence in retinal pigment epithelial cells[J].Cell Death Dis, 2018, 9(7): 753. [11] KOPPULA P, ZHUANG L, GAN B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy[J]. Protein Cell, 2021, 12(8): 599-620. [12] REIS A, SPICKETT C M. Chemistry of phospholipid oxidation[J]. Biochim Biophys Acta, 2012, 1818(10):2374-2387. [13] SHINTOKU R, TAKIGAWA Y, YAMADA K, et al. Lipoxygenase-mediated generation of lipid peroxides enhances ferroptosis induced by erastin and RSL3[J]. Cancer Sci, 2017, 108(11): 2187-2194. [14] GAO M, MONIAN P, PAN Q, et al. Ferroptosis is an autophagic cell death process[J]. Cell Res, 2016, 26(9): 1021-1032. [15] YU F, ZHANG Q, LIU H, et al. Dynamic O-GlcNAcylation coordinates ferritinophagy and mitophagy to activate ferroptosis[J]. Cell Discov, 2022, 8(1): 40. [16] LEE H, ZANDKARIMI F, ZHANG Y, et al. Energy-stress-mediated AMPK activation inhibits ferroptosis[J]. Nat Cell Biol , 2020, 22(2): 225-234. [17] SONG X, ZHU S, CHEN P, et al. AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system X(c)(-) activity[J]. Curr Biol, 2018, 28(15): 2388-2399.e5. [18] YANG W H, DING C C, SUN T, et al. The Hippo pathway effector TAZ regulates ferroptosis in renal cell carcinoma[J]. Cell Rep, 2019, 28(10): 2501-2508.e4. [19] JIANG L, KON N, LI T, et al. Ferroptosis as a p53-mediated activity during tumour suppression[J]. Nature, 2015, 520(7545): 57-62. [20] HASSANNIA B, VANDENABEELE P, VANDEN BERGHE T. Targeting ferroptosis to iron out cancer[J]. Cancer Cell, 2019, 35(6): 830-849. [21] BROWN C W, AMANTE J J, CHHOY P, et al. Prominin2 drives ferroptosis resistance by stimulating iron export[J]. Dev Cell, 2019, 51(5): 575-586.e4. [22] YAGODA N, VON RECHENBERG M, ZAGANJOR E, et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels[J]. Nature, 2007, 447(7146): 864-868. [23] DEHART D N, FANG D, HESLOP K, et al. Opening of voltage dependent anion channels promotes reactive oxygen species generation, mitochondrial dysfunction and cell death in cancer cells[J]. Biochem Pharmacol, 2018, 148: 155-162. [24] TANG Z, JU Y, DAI X, et al. HO-1-mediated ferroptosis as a target for protection against retinal pigment epithelium degeneration[J]. Redox Biol, 2021, 43: 101971. [25] DOLL S, FREITAS F P, SHAH R, et al. FSP1 is a glutathione-independent ferroptosis suppressor[J]. Nature, 2019, 575(7784): 693-698. [26] ZHAO X, GAO M, LIANG J, et al. SLC7A11 reduces laser-induced choroidal neovascularization by inhibiting RPE ferroptosis and VEGF production[J]. Front Cell Dev Biol, 2021, 9: 639851. [27] LIU Y, BELL B A, SONG Y, et al. Intraocular iron injection induces oxidative stress followed by elements of geographic atrophy and sympathetic ophthalmia[J]. Aging cell, 2021, 20(11): e13490. [28] SHU W, BAUMANN B H, SONG Y, et al. Ferrous but not ferric iron sulfate kills photoreceptors and induces photoreceptor-dependent RPE autofluorescence[J]. Redox Biol, 2020, 34: 101469. [29] TOTSUKA K, UETA T, UCHIDA T, et al. Oxidative stress induces ferroptotic cell death in retinal pigment epithelial cells[J]. Exp Eye Res, 2019, 181:316-324. [30] CRABB J W. The proteomics of drusen[J]. Cold Spring Harb Perspect Med, 2014, 4(7): a017194. [31] YANG M, SO K F, LAM W C, et al. Novel programmed cell death as therapeutic targets in age-related macular degeneration?[J]. Int J Mol Sci, 2020, 21(19): 7279. [32] CAO D, LEONG B, MESSINGER J D, et al. Hyperreflective foci, optical coherence tomography progression indicators in age-related macular degeneration, include transdifferentiated retinal pigment epithelium[J]. Invest Ophthalmol Vis Sci, 2021, 62(10): 34. [33] PARIENTE A, PELÁEZ R, PÉREZ-SALA Á, et al. Inflammatory and cell death mechanisms induced by 7-ketocholesterol in the retina. Implications for age-related macular degeneration[J]. Exp Eye Res, 2019, 187: 107746. [34] KAARNIRANTA K, KOSKELA A, FELSZEGHY S, et al. Fatty acids and oxidized lipoproteins contribute to autophagy and innate immunity responses upon the degeneration of retinal pigment epithelium and development of age-related macular degeneration[J]. Biochimie, 2019, 159: 49-54. [35] FLAXEL C J, ADELMAN R A, BAILEY S T, et al. Age-related macular degeneration preferred practice pattern[J]. Ophthalmology, 2020, 127(1): P1-P65. [36] SONG D, ZHAO L, LI Y, et al. The oral iron chelator deferiprone protects against systemic iron overload-induced retinal degeneration in hepcidin knockout mice[J]. Invest Ophthalmol Vis Sci, 2014, 55(7): 4525-4532. [37] KONTOGHIORGHES G J, KONTOGHIORGHE C N. Iron and chelation in biochemistry and medicine: new approaches to controlling iron metabolism and treating related diseases[J]. Cells, 2020, 9(6):1456. [38] OBOLENSKY A, BERENSHTEIN E, LEDERMAN M, et al. Zinc-desferrioxamine attenuates retinal degeneration in the rd10 mouse model of retinitis pigmentosa[J]. Free Radic Biol Med, 2011, 51(8): 1482-1491. [39] TANG Z, HUO M, JU Y, et al. Nanoprotection against retinal pigment epithelium degeneration via ferroptosis inhibition[J]. Small Methods, 2021, 5(12): e2100848. [40] GUPTA U, GHOSH S, WALLACE C T, et al. Increased LCN2 (lipocalin 2) in the RPE decreases autophagy and activates inflammasome-ferroptosis processes in a mouse model of dry AMD[J]. Autophagy, 2023, 19(1):92-111. [41] SCHWARTZ S D, HUBSCHMAN J P, HEILWELL G, et al. Embryonic stem cell trials for macular degeneration: a preliminary report[J]. Lancet, 2012, 379(9817): 713-720. [42] SCHWARTZ S D, REGILLO C D, LAM B L, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies[J]. Lancet, 2015, 385(9967): 509-516. |